Research

An evolutionarily conserved intronic region controls the spatiotemporal expression of the transcription factor Sox10


Reference:

Dutton, J. R., Antonellis, A., Carney, T. J., Rodriguez, F. S. L. M., Pavan, W. J., Ward, A. and Kelsh, R. N., 2008. An evolutionarily conserved intronic region controls the spatiotemporal expression of the transcription factor Sox10. BMC Developmental Biology, 8 (1), p. 105.

Related documents:

[img]
Preview
PDF (1471-213X-8-105.pdf) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (2908kB) | Preview

    Official URL:

    http://www.biomedcentral.com/1471-213X/8/105

    Abstract

    Background: A major challenge lies in understanding the complexities of gene regulation. Mutation of the transcription factor SOX10 is associated with several human diseases. The disease phenotypes reflect the function of SOX10 in diverse tissues including the neural crest, central nervous system and otic vesicle. As expected, the SOX10 expression pattern is complex and highly dynamic, but little is known of the underlying mechanisms regulating its spatiotemporal pattern. SOX10 expression is highly conserved between all vertebrates characterised. Results: We have combined in vivo testing of DNA fragments in zebrafish and computational comparative genomics to identify the first regulatory regions of the zebrafish sox10 gene. Both approaches converged on the 3' end of the conserved 1st intron as being critical for spatial patterning of sox10 in the embryo. Importantly, we have defined a minimal region crucial for this function. We show that this region contains numerous binding sites for transcription factors known to be essential in early neural crest induction, including Tcf/Lef, Sox and FoxD3. We show that the identity and relative position of these binding sites are conserved between zebrafish and mammals. A further region, partially required for oligodendrocyte expression, lies in the 5' region of the same intron and contains a putative CSL binding site, consistent with a role for Notch signalling in sox10 regulation. Furthermore, we show that β-catenin, Notch signalling and Sox9 can induce ectopic sox10 expression in early embryos, consistent with regulatory roles predicted from our transgenic and computational results. Conclusion: We have thus identified two major sites of sox10 regulation in vertebrates and provided evidence supporting a role for at least three factors in driving sox10 expression in neural crest, otic epithelium and oligodendrocyte domains.

    Details

    Item Type Articles
    CreatorsDutton, J. R., Antonellis, A., Carney, T. J., Rodriguez, F. S. L. M., Pavan, W. J., Ward, A. and Kelsh, R. N.
    DOI10.1186/1471-213X-8-105
    DepartmentsFaculty of Science > Biology & Biochemistry
    Research CentresCentre for Regenerative Medicine
    Publisher Statement1471-213X-8-105.pdf: © 2008 Dutton et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1471-213X/8/105
    RefereedYes
    StatusPublished
    ID Code12302

    Export

    Actions (login required)

    View Item

    Document Downloads

    More statistics for this item...