Research

Continuum vs. discrete flux behaviour in large mesoscopic Bi2 Sr2 CaCu2 O8+δ disks


Reference:

Connolly, M. R., Milosevic, M. V., Bending, S. J., Clem, J. R. and Tamegai, T., 2009. Continuum vs. discrete flux behaviour in large mesoscopic Bi2 Sr2 CaCu2 O8+δ disks. EPL (Europhysics Letters), 85 (1), 17008.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

http://dx.doi.org/10.1209/0295-5075/85/17008

Abstract

Scanning Hall probe and local Hall magnetometry measurements have been used to investigate flux distributions in large mesoscopic superconducting disks with sizes that lie near the crossover between the bulk and mesoscopic vortex regimes. Results obtained by directly mapping the magnetic induction profiles of the disks at different applied fields can be quite successfully fitted to analytic models which assume a continuous distribution of flux in the sample. At low fields, however, we do observe clear signatures of the underlying discrete vortex structure and can resolve the characteristic mesoscopic compression of vortex clusters in increasing magnetic fields. Even at higher fields, where single-vortex resolution is lost, we are still able to track configurational changes in the vortex patterns, since competing vortex orders impose unmistakable signatures on "local" magnetisation curves as a function of the applied field. Our observations are in excellent agreement with molecular-dynamics numerical simulations which lead us to a natural definition of the lengthscale for the crossover between discrete and continuum behaviours in our system.

Details

Item Type Articles
CreatorsConnolly, M. R., Milosevic, M. V., Bending, S. J., Clem, J. R. and Tamegai, T.
DOI10.1209/0295-5075/85/17008
DepartmentsFaculty of Science > Physics
RefereedYes
StatusPublished
ID Code13515

Export

Actions (login required)

View Item