Research

Experimental investigation of natural convection heat exchange within a physical model of the manifold chamber of a thermosyphon heat-pipe evacuated tube solar water heater


Reference:

Redpath, D. A. G., Eames, P. C., Lo, S. N. G. and Griffiths, P. W., 2009. Experimental investigation of natural convection heat exchange within a physical model of the manifold chamber of a thermosyphon heat-pipe evacuated tube solar water heater. Solar Energy, 83 (7), pp. 988-997.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

http://dx.doi.org/10.1016/j.solener.2009.01.002

Abstract

The high capital costs associated with heat-pipe evacuated tube solar water heating systems can be reduced by replacing forced circulation with thermosyphon circulation. Currently research on thermosyphon heat-pipe evacuated tube solar water heaters is limited. An experimental investigation of the natural convective heat exchange regime that exists within the manifold chamber of a proprietary heat-pipe evacuated tube solar water was undertaken. This paper presents experimental data from a heat-pipe Evacuated Tube Solar Water Heater (ETSWH) subjected to the Northern Maritime Climate at the University of Ulster’s outdoor solar testing facility located at the Jordanstown campus. The thermal performance of this across solar noon (±30 min) was experimentally determined to be comparable to two physical laboratory 10 pin-fin model manifolds constructed to the same dimensions and geometry as the manifold chamber of the heat-pipe ETSWH when operated under steady laboratory conditions. When the surface temperatures of the pin-fins (simulated condensers) in the model manifold were normalised with respect to the lowest most pin-fin in the array the influence of buoyant flow was observed. Similarly to related studies in this field it was found that normalised surface temperatures on downstream pin-fins do not increase monotonically as would be expected if no interactions occur. It was found that at the pin-fin diameter to pitch used in the model manifold that normalised surface temperatures decrease at certain points in the array due to the action of buoyant flow generated from upstream pin-fins which increased heat transfer. Two-dimensional Particle Imaging Velocimetry (2D-PIV) was used to visualise the thermosyphon fluid flow regime. It was observed that the fluid flow regime varied across the model due to interactions between the fluid, chamber walls and pin-fins.

Details

Item Type Articles
CreatorsRedpath, D. A. G., Eames, P. C., Lo, S. N. G. and Griffiths, P. W.
DOI10.1016/j.solener.2009.01.002
Uncontrolled Keywordsevacuated, natural convection, interacting fluid flows, heat-pipe
DepartmentsFaculty of Engineering & Design > Architecture & Civil Engineering
Research CentresCentre for Window and Cladding Technology
RefereedYes
StatusPublished
ID Code13650
Additional InformationID number: doi:10.1016/j.solener.2009.01.002

Export

Actions (login required)

View Item