Research

Crude Oil Fouling in a Pilot-Scale Parallel Tube Apparatus


Reference:

Crittenden, B. D., Kolaczkowski, S. T., Takemoto, T. and Phillips, D. Z., 2009. Crude Oil Fouling in a Pilot-Scale Parallel Tube Apparatus. Heat Transfer Engineering, 30 (10-11), pp. 777-785.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

http://dx.doi.org/10.1080/01457630902744135

Abstract

Maya crude oil fouling reveals a seemingly straightforward dependency of initial fouling rate on surface temperature, but a maximum is found in the initial fouling rate-velocity relationship, which mirrors that found in a model chemical system of styrene polymerization. The linear dependency of the logarithm of the pre-exponential factor on apparent activation energy for the crude oil is also found in the styrene system. The apparent activation energy for the crude oil ranged from 26.4 kJ/mol at 1.0 m/s to 245 kJ/mol at 4.0 m/s. Such strong dependencies of apparent activation energy on velocity, even at high velocity, are consistent with Epstein's mass transfer reaction attachment model. Surface temperatures at which the fouling rate becomes velocity independent are 274C and 77C for Maya crude oil and styrene, respectively. For surface temperatures in excess of this isokinetic temperature, an increase in velocity would lead to an increase in the rate of fouling.

Details

Item Type Articles
CreatorsCrittenden, B. D., Kolaczkowski, S. T., Takemoto, T. and Phillips, D. Z.
DOI10.1080/01457630902744135
DepartmentsFaculty of Engineering & Design > Chemical Engineering
RefereedYes
StatusPublished
ID Code13992

Export

Actions (login required)

View Item