Research

Early Onset Prion Disease from Octarepeat Expansion Correlates with Copper Binding Properties


Reference:

Stevens, D. J., Walter, E. D., Rodriguez, A., Draper, D., Davies, P., Brown, D. R. and Millhauser, G. L., 2009. Early Onset Prion Disease from Octarepeat Expansion Correlates with Copper Binding Properties. PLoS Pathogens, 5 (4), e1000390.

Related documents:

[img]
Preview
PDF (journal.ppat.1000390.pdf) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (427kB) | Preview

    Official URL:

    http://dx.doi.org/10.1371/journal.ppat.1000390

    Abstract

    Insertional mutations leading to expansion of the octarepeat domain of the prion protein (PrP) are directly linked to prion disease. While normal PrP has four PHGGGWGQ octapeptide segments in its flexible N-terminal domain, expanded forms may have up to nine additional octapeptide inserts. The type of prion disease segregates with the degree of expansion. With up to four extra octarepeats, the average onset age is above 60 years, whereas five to nine extra octarepeats results in an average onset age between 30 and 40 years, a difference of almost three decades. In wild-type PrP, the octarepeat domain takes up copper (Cu2+) and is considered essential for in vivo function. Work from our lab demonstrates that the copper coordination mode depends on the precise ratio of Cu2+ to protein. At low Cu2+ levels, coordination involves histidine side chains from adjacent octarepeats, whereas at high levels each repeat takes up a single copper ion through interactions with the histidine side chain and neighboring backbone amides. Here we use both octarepeat constructs and recombinant PrP to examine how copper coordination modes are influenced by octarepeat expansion. We find that there is little change in affinity or coordination mode populations for octarepeat domains with up to seven segments (three inserts). However, domains with eight or nine total repeats (four or five inserts) become energetically arrested in the multi-histidine coordination mode, as dictated by higher copper uptake capacity and also by increased binding affinity. We next pooled all published cases of human prion disease resulting from octarepeat expansion and find remarkable agreement between the sudden length-dependent change in copper coordination and onset age. Together, these findings suggest that either loss of PrP copper-dependent function or loss of copper-mediated protection against PrP polymerization makes a significant contribution to early onset prion disease.

    Details

    Item Type Articles
    CreatorsStevens, D. J., Walter, E. D., Rodriguez, A., Draper, D., Davies, P., Brown, D. R. and Millhauser, G. L.
    DOI10.1371/journal.ppat.1000390
    DepartmentsFaculty of Science > Biology & Biochemistry
    Publisher Statementjournal.ppat.1000390.pdf: Citation: Stevens DJ, Walter ED, Rodríguez A, Draper D, Davies P, et al. (2009) Early Onset Prion Disease from Octarepeat Expansion Correlates with Copper Binding Properties. PLoS Pathog 5(4): e1000390. doi:10.1371/journal.ppat.1000390 © 2009 Stevens et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    RefereedYes
    StatusPublished
    ID Code14388

    Export

    Actions (login required)

    View Item

    Document Downloads

    More statistics for this item...