Research

Flow over an aerofoil without and with a leading-edge slat at a transitional Reynolds number


Reference:

Genc, M. S., Kaynak, U. and Lock, G. D., 2009. Flow over an aerofoil without and with a leading-edge slat at a transitional Reynolds number. Proceedings of the Institution of Mechanical Engineers Part G - Journal of Aerospace Engineering, 223 (G3), pp. 217-231.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

http://dx.doi.org/10.1243/09544100JAERO434

Abstract

In this study, a multi-element aerofoil including NACA2415 aerofoil with NACA22 leading-edge slat is experimentally and computationally investigated at a transitional Reynolds number of 2 x 10(5). In the experiment, the single-element aerofoil experiences a laminar separation bubble, and a maximum lift coefficient of 1.3 at a stall angle of attack of 12 degrees is obtained. This flow has been numerically simulated by FLUENT, employing the recently developed, k-k(L)-omega and k-omega shear-stress transport (SST) transition models. Both transition models are shown to accurately predict the location of the experimentally determined separation bubble. Experimental measurements also illustrate that the leading-edge slat significantly delays the stall up to an angle of attack of 20 degrees, with a maximum lift coefficient of 1.9. The fluid dynamics governing this improvement is the elimination of the separation bubble by the injection of high momentum fluid through the slat over the main aerofoil - an efficient means of flow control. Numerical simulations using k-k(L)-omega are shown to accurately predict the lift curve, including stall, but not the complete elimination of the separation bubble. Conversely, the lift curve prediction using the k-omega SST transition model is less successful, but the separation bubble is shown to fully vanish in agreement with the experiment.

Details

Item Type Articles
CreatorsGenc, M. S., Kaynak, U. and Lock, G. D.
DOI10.1243/09544100JAERO434
Uncontrolled Keywordsflow separation control, leading-edge slat, separation bubble, transition models, wind tunnel
DepartmentsFaculty of Engineering & Design > Mechanical Engineering
Research CentresAerospace Engineering Research Centre
RefereedYes
StatusPublished
ID Code14435

Export

Actions (login required)

View Item