Stripes and belly-spots:a review of pigment cell morphogenesis in vertebrates


Kelsh, R. N., Harris, M. L., Colanesi, S. and Erickson, C. A., 2009. Stripes and belly-spots:a review of pigment cell morphogenesis in vertebrates. Seminars in Cell & Developmental Biology, 20 (1), pp. 90-104.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

Related URLs:


Pigment patterns in the integument have long-attracted attention from both scientists and non-scientists alike since their natural attractiveness combines with their excellence as models for the general problem of pattern formation. Pigment cells are formed from the neural crest and must migrate to reach their final locations. In this review, we focus on our current understanding of mechanisms underlying the control of pigment cell migration and patterning in diverse vertebrates. The model systems discussed here chick, mouse, and zebrafish - each provide unique insights into the major morphogenetic events driving pigment pattern formation. In birds and mammals, melanoblasts must be specified before they can migrate on the dorsolateral pathway. Transmembrane receptors involved in guiding them onto this route include EphB2 and Ednrb2 in chick, and Kit in mouse. Terminal migration depends, in part, upon extracellular matrix reorganization by ADAMTS20. Invasion of the ectoderm, especially into the feather germ and hair follicles, requires specific signals that are beginning to be characterized. We summarize our current understanding of the mechanisms regulating melanoblast number and organization in the epidermis. We note the apparent differences in pigment pattern formation in poikilothermic vertebrates when compared with birds and mammals. With more pigment cell types, migration pathways are more complex and largely unexplored; nevertheless, a role for Kit signaling in melanophore migration is clear and indicates that at least some patterning mechanisms may be highly conserved. We summarize the multiple factors thought to contribute to zebrafish embryonic pigment pattern formation, highlighting a recent study identifying Sdf1a as one factor crucial for regulation of melanophore positioning. Finally, we discuss the mechanisms generating a second, metamorphic pigment pattern in adult fish, emphasizing recent studies strengthening the evidence that undifferentiated progenitor cells play a major role in generating adult pigment cells.


Item Type Articles
CreatorsKelsh, R. N., Harris, M. L., Colanesi, S. and Erickson, C. A.
Related URLs
Uncontrolled Keywordsmelanophore,patterning,xanthophore,iridophore,morphogenesis,melanocyte,vertebrate embryos,neural crest
DepartmentsFaculty of Science > Biology & Biochemistry
Research CentresCentre for Regenerative Medicine
Centre for Mathematical Biology
ID Code14722


Actions (login required)

View Item