Research

The novel RASSF6 and RASSF10 candidate tumour suppressor genes are frequently epigenetically inactivated in childhood leukaemias


Reference:

Hesson, L. B., Dunwell, T. L., Cooper, W. N., Catchpoole, D., Brini, A. T., Chiaramonte, R., Griffiths, M., Chalmers, A. D., Maher, E. R. and Latif, F., 2009. The novel RASSF6 and RASSF10 candidate tumour suppressor genes are frequently epigenetically inactivated in childhood leukaemias. Molecular Cancer, 8 (42).

Related documents:

[img]
Preview
PDF (1476-4598-8-42.pdf) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (2272kB) | Preview

    Official URL:

    http://www.molecular-cancer.com/content/8/1/42

    Abstract

    Background: The Ras-assocation family (RASSF) of tumour suppressor genes (TSGs) contains 10 members that encode proteins containing Ras-assocation (RA) domains. Several members of the RASSF family are frequently epigenetically inactivated in cancer, however, their role in leukaemia has remained largely uninvestigated. Also, RASSF10 is a predicted gene yet to be experimentally verified. Here we cloned, characterised and demonstrated expression of RASSF10 in normal human bone marrow. We also determined the methylation status of CpG islands associated with RASSF1-10 in a series of childhood acute lymphocytic leukaemias (ALL) and normal blood and bone marrow samples. Results: COBRA and bisulphite sequencing revealed RASSF6 and RASSF10 were the only RASSF members with a high frequency of leukaemia-specific methylation. RASSF6 was methylated in 94% (48/51) B-ALL and 41% (12/29) T-ALL, whilst RASSF10 was methylated in 16% (8/51) B-ALL and 88% (23/26) T-ALL. RASSF6 and RASSF10 expression inversely correlated with methylation which was restored by treatment with 5-aza-2'deoxycytidine (5azaDC). Conclusion: This study shows the hypermethylation profile of RASSF genes in leukaemias is distinct from that of solid tumours and represents the first report of inactivation of RASSF6 or RASSF10 in cancer. These data show epigenetic inactivation of the candidate TSGs RASSF6 and RASSF10 is an extremely frequent event in the pathogenesis of childhood leukaemia. This study also warrants further investigation of the newly identified RASSF member RASSF10 and its potential role in leukaemia.

    Details

    Item Type Articles
    CreatorsHesson, L. B., Dunwell, T. L., Cooper, W. N., Catchpoole, D., Brini, A. T., Chiaramonte, R., Griffiths, M., Chalmers, A. D., Maher, E. R. and Latif, F.
    DOI10.1186/1476-4598-8-42
    DepartmentsFaculty of Science > Biology & Biochemistry
    Research CentresCentre for Regenerative Medicine
    Publisher Statement1476-4598-8-42.pdf: © 2009 Hesson et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    RefereedYes
    StatusPublished
    ID Code15278

    Export

    Actions (login required)

    View Item

    Document Downloads

    More statistics for this item...