Research

The behaviour of inositol 1,3,4,5,6-pentakisphosphate in the presence of the major biological metal cations


Reference:

Veiga, N., Torres, J., Godage, H. Y., Riley, A. M., Dominguez, S., Potter, B. V. L., Diaz, A. and Kremer, C., 2009. The behaviour of inositol 1,3,4,5,6-pentakisphosphate in the presence of the major biological metal cations. Journal of Biological Inorganic Chemistry, 14 (7), pp. 1001-1013.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

http://dx.doi.org/10.1007/s00775-009-0510-z

Abstract

The inositol phosphates are ubiquitous metabolites in eukaryotes, of which the most abundant are inositol hexakisphosphate (InsP (6)) and inositol 1,3,4,5,6-pentakisphosphate [Ins(1,3,4,5,6)P (5))]. These two compounds, poorly understood functionally, have complicated complexation and solid formation behaviours with multivalent cations. For InsP (6), we have previously described this chemistry and its biological implications (Veiga et al. in J Inorg Biochem 100:1800, 2006; Torres et al. in J Inorg Biochem 99:828, 2005). We now cover similar ground for Ins(1,3,4,5,6)P (5), describing its interactions in solution with Na+, K+, Mg2+, Ca2+, Cu2+, Fe2+ and Fe3+, and its solid-formation equilibria with Ca2+ and Mg2+. Ins(1,3,4,5,6)P (5) forms soluble complexes of 1:1 stoichiometry with all multivalent cations studied. The affinity for Fe3+ is similar to that of InsP (6) and inositol 1,2,3-trisphosphate, indicating that the 1,2,3-trisphosphate motif, which Ins(1,3,4,5,6)P (5) lacks, is not absolutely necessary for high-affinity Fe3+ complexation by inositol phosphates, even if it is necessary for their prevention of the Fenton reaction. With excess Ca2+ and Mg2+, Ins(1,3,4,5,6)P (5) also forms the polymetallic complexes [M-4(H2L)] [where L is fully deprotonated Ins(1,3,4,5,6)P (5)]. However, unlike InsP (6), Ins(1,3,4,5,6)P (5) is predicted not to be fully associated with Mg2+ under simulated cytosolic/nuclear conditions. The neutral Mg2+ and Ca2+ complexes have significant windows of solubility, but they precipitate as [Mg-4(H2L)]center dot 23H(2)O or [Ca-4(H2L)]center dot 16H(2)O whenever they exceed 135 and 56 mu M in concentration, respectively. Nonetheless, the low stability of the [M-4(H2L)] complexes means that the 1:1 species contribute to the overall solubility of Ins(1,3,4,5,6)P (5) even under significant Mg2+ or Ca2+ excesses. We summarize the solubility behaviour of Ins(1,3,4,5,6)P (5) in straightforward plots.

Details

Item Type Articles
CreatorsVeiga, N., Torres, J., Godage, H. Y., Riley, A. M., Dominguez, S., Potter, B. V. L., Diaz, A. and Kremer, C.
DOI10.1007/s00775-009-0510-z
DepartmentsFaculty of Science > Pharmacy & Pharmacology
RefereedYes
StatusPublished
ID Code16144

Export

Actions (login required)

View Item