Research

Photonic band structure calculations using nonlinear eigenvalue techniques


Reference:

Spence, A. and Poulton, C., 2005. Photonic band structure calculations using nonlinear eigenvalue techniques. Journal of Computational Physics, 204 (1), pp. 65-81.

Related documents:

[img]
Preview
PDF (spence_jcp_accepted.pdf) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (245kB) | Preview

    Official URL:

    http://www.sciencedirect.com/science/journal/00219991

    Abstract

    This paper considers the numerical computation of the photonic band structure of periodic materials such as photonic crystals. This calculation involves the solution of a Hermitian nonlinear eigenvalue problem. Numerical methods for nonlinear eigenvalue problems are usually based on Newton’s method or are extensions of techniques for the standard eigenvalue problem. We present a new variation on existing methods which has its derivation in methods for bifurcation problems, where bordered matrices are used to compute critical points in singular systems. This new approach has several advantages over the current methods. First, in our numerical calculations the new variation is more robust than existing techniques, having a larger domain of convergence. Second, the linear systems remain Hermitian and are nonsingular as the method converges. Third, the approach provides an elegant and efficient way of both thinking about the problem and organising the computer solution so that only one linear system needs to be factorised at each stage in the solution process. Finally, first- and higher-order derivatives are calculated as a natural extension of the basic method, and this has advantages in the electromagnetic problem discussed here, where the band structure is plotted as a set of paths in the (ω,k) plane.

    Details

    Item Type Articles
    CreatorsSpence, A.and Poulton, C.
    DOI10.1016/j.jcp.2004.09.016
    Uncontrolled Keywordsphotonic band-gap materials, newton’s method, nonlinear eigenvalue problems, photonic crystals
    DepartmentsFaculty of Science > Mathematical Sciences
    RefereedYes
    StatusPublished
    ID Code162
    Additional InformationThe original publication is available at www.sciencedirect.com

    Export

    Actions (login required)

    View Item

    Document Downloads

    More statistics for this item...