Research

A high precision direct integration scheme for nonlinear dynamic systems


Reference:

Li, K. and Darby, A. P., 2009. A high precision direct integration scheme for nonlinear dynamic systems. Journal of Computational and Nonlinear Dynamics, 4 (4), 041008.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

http://dx.doi.org/10.1115/1.3192129

Abstract

Based on the high precision direct (HPD) integration scheme for linear systems, a high precision direct integration scheme for nonlinear (HPD-NL) dynamic systems is developed. The method retains all the advantages of the standard HPD scheme (high precision with large time-steps and computational efficiency) while allowing nonlinearities to be introduced with little additional computational effort. In addition, limitations on minimum time step resulting from the approximation that load varies linearly between timesteps are reduced by introducing a polynomial approximation of the load. This means that, in situations where a rapidly varying or transient dynamic load occurs, a larger time-step can still be used while maintaining a good approximation of the forcing function and, hence, the accuracy of the solution. Numerical examples of the HPD-NL scheme compared with Newmark's method and the fourth-order Runge-Kutta (Kutta 4) method are presented. The examples demonstrate the high accuracy and numerical efficiency of the proposed method.

Details

Item Type Articles
CreatorsLi, K.and Darby, A. P.
DOI10.1115/1.3192129
DepartmentsFaculty of Engineering & Design > Architecture & Civil Engineering
RefereedYes
StatusPublished
ID Code16377

Export

Actions (login required)

View Item