Research

Accurate heat transfer measurements using thermochromic liquid crystal, Part 2 : application to a rotating disc


Reference:

Kakade, V. U., Lock, G. D., Wilson, M., Owen, J. M. and Mayhew, J. E., 2009. Accurate heat transfer measurements using thermochromic liquid crystal, Part 2 : application to a rotating disc. International Journal of Heat and Fluid Flow, 30 (5), pp. 950-959.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

http://dx.doi.org/10.1016/j.ijheatfluidflow.2009.04.005

Abstract

Encapsulated thermochromic liquid crystal (TLC) can accurately measure surface temperature in a variety of heat transfer and fluid-flow experiments. In Part 1 of this two-part paper, two narrow-band liquid crystals were specifically calibrated for application to experiments on a disc rotating at high speed (similar to 5000 rpm). Part 2 describes how these crystals were used to measure the surface temperature on the disc in a transient experiment that models the flow of internal cooling air in a gas turbine. The TLC was viewed through the transparent polycarbonate disc using a digital video camera and strobe light synchronised to the disc frequency. The convective heat transfer coefficient, h, was subsequently calculated from the one-dimensional solution of Fourier's conduction equation for a semi-infinite wall. The analysis accounted for the exponential rise in the air temperature driving the heat transfer, and for experimental uncertainties in the measured values of h. The paper focuses on the method used, and sample experimental results are provided to demonstrate the accuracy and potency of the technique.

Details

Item Type Articles
CreatorsKakade, V. U., Lock, G. D., Wilson, M., Owen, J. M. and Mayhew, J. E.
DOI10.1016/j.ijheatfluidflow.2009.04.005
DepartmentsFaculty of Engineering & Design > Mechanical Engineering
Research CentresAerospace Engineering Research Centre
RefereedYes
StatusPublished
ID Code17080

Export

Actions (login required)

View Item