Molecular Pharmacology of Altered Cardiopulmonary Function in Inflammation

Mohammed Shaaban Hassan El-Awady

A thesis submitted for the degree of Doctor of Philosophy
University of Bath
Department of Pharmacy and Pharmacology

November 2008

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author. A copy of this thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and they must not copy it or use material from it except as permitted by law or with the consent of the author.

This thesis may be made available for consultation within the University Library and may be photocopied or lent to other libraries for the purposes of consultation.

Signed:…………………………………………
Acknowledgements

I wish to express my sincere gratitude and appreciation to my supervisors, Dr. Malcolm Watson and Dr. Sergey Smirnov for their continuous guidance, help and support. Their guidance helped me in critically analyzing scientific literature, planning and executing experimental strategies, and writing, presenting, and publishing my results.

I sincerely thank my Egyptian colleagues and friends (Osama, Hassan, Mostafa, Hany, Hanan) for their help, advice and sharing good moments throughout these years.

I would also like to thank Dr. Mike Storm and Dr. Adrian Roger for their technical help and advice. Thanks also to all the colleagues in the department, the technicians and the staff of the animal house for their assistance and support.

I sincerely thank the Egyptian Cultural Bureau in London, the Mission Department in Cairo and My Department of Pharmacology & Toxicology, University of Mansoura, Egypt for the financial support, assistance and advice.

Finally and most importantly, I thank my family for their invaluable support and sharing both good and bad moments of life throughout these past four years.
Publications

Original papers:

2- El-Awady MSH, Smirnov SV, Watson ML. Voltage-independent calcium channels mediate lipopolysaccharide-induced hyporeactivity to endothelin-1 in the rat aorta. Submitted.

Abstracts:

3- El-Awady MSH, Smirnov SV, Watson ML. Lipopolysaccharide-induced vascular hypocontractility to endothelin-1 in rat is dependent on non-voltage-gated calcium channels but not on calcium sensitization. Presented at EPHAR2008 and published in *Fundamental & Clinical Pharmacology*, **22** (Suppl. 2), 74.
Abstract

Inflammation has incompletely characterized effects on cardiopulmonary vascular reactivity. Sepsis is a major inflammatory disease characterized by two main vasomotor complications, generalized vasodilation with hyporesponsiveness to vasoconstrictors and pulmonary hypertension. The main aim of this study is to examine the molecular mechanisms involved in cardiopulmonary vascular reactivity changes induced by the powerful inflammatory stimulus lipopolysaccharide (LPS). Pulmonary and aortic rings from male Wistar rats (250-300g) were isolated and incubated for 20 h in culture medium (DMEM+10% FBS) with or without LPS (E. coli O55:B5, 10 µg.ml⁻¹). The effect of organ culture and LPS type, concentration and incubation time in addition to tissue contraction to endothelin-1 (ET-1), phenylephrine, 80 mM KCl, and U46619; and relaxation responses to ACh, sodium nitroprusside (SNP), 8-pCPT-cGMP, BAY 41-2272, T-0156, nifedpine, SKF-96365, Ro-31-8425, and Y-27632 were measured by standard organ bath techniques. Nitric oxide (NO) production was measured by the Griess method and SNP-induced cGMP production was measured by ELISA. mRNAs expression levels of eNOS, iNOS, ET-1, ETα and ETβ were measured by qRT-PCR and the expression levels of PKC, sGCα1, sGCβ1 and PDE5 and phosphorylation of MLC20, ROKα, CPI-17 and MYPT1 were measured by immunoblotting. The effect of endothelium removal, indomethacin, trolox, external Ca²⁺ removal, 1400W, ODQ, glibenclamide, iberiotoxin and cycloheximide in addition to changes in intracellular Ca²⁺ ([Ca²⁺]ᵢ) in aortic vascular smooth muscle cells (VSMCs) induced by ET-1 were also measured. LPS selectively induced vascular hyporeactivity to different vasoconstrictors in rat aorta but not in the pulmonary artery, which is not due to organ culturing and is not affected by changing the LPS type, but is enhanced by increasing LPS concentration or the incubation time. This aortic hypocontractility to ET-1 is largely mediated by NO-independent activation of sGC and depends on external Ca²⁺ influx through non-VOCCs, but not on ET-1 receptor expression or Ca²⁺ sensitization. In addition, this aortic hyporeactivity to ET-1 is dependent on protein synthesis. The pulmonary artery is not affected because LPS induces a desensitization of the sGC/cGMP dependent pathway by decreasing protein expression levels of sGCβ1, and hence sGC activity, and increasing PDE5 activity. Neither the endothelium, cyclooxygenase, reactive oxygen species nor K⁺ channels are involved in these LPS effects. Therefore, it is likely that both Ca²⁺ homeostasis and the sGC/cGMP pathway play important roles in vasomotor complications in sepsis. sGC and/or PDE5-selective inhibitors, together with manipulating VSMC [Ca²⁺], could be important in controlling systemic and pulmonary vasomotor complications in sepsis.
Contents

Chapter 1: Introduction

1. Inflammation, lipopolysaccharide and vascular reactivity
 1.1 Inflammation and vascular reactivity
 1.2 Lipopolysaccharide
 1.2.1 LPS recognition and signalling
 1.2.2 LPS and inflammation
 1.2.3 LPS and vascular reactivity
2. Nitric oxide
 2.1 Synthesis of NO
 2.2 NO synthases
 2.3 Metabolism of NO
 2.4 Mechanism of Action of NO
 2.5 Dysfunction of NO pathway
 2.6 Physiological effects of NO
 2.7 Role of NO in inflammation and sepsis
3. Endothelins
 3.1 ET structure
 3.2 ET biosynthesis and secretion
 3.3 ET metabolism/clearance
 3.4 ET receptors
 3.5 ET receptor-mediated signalling pathways
 3.6 ET physiological and pathophysiological actions
 3.7 ET interactions with NO
 3.8 ET role in inflammation and sepsis
4. Regulation of VSM contraction
 4.1 Intracellular Ca\(^{2+}\) regulation
 4.1.1 Ca\(^{2+}\) release from SR
 4.1.2 Ca\(^{2+}\) influx across the plasmalemma
 4.1.3 Mechanisms that reduce [Ca\(^{2+}\)]\(_{i}\)
 4.2 Mechanisms controlling the Ca\(^{2+}\) sensitization of the contractile apparatus
1.4.3 Other mechanisms regulating VSM contraction

1.4.3.1 Cyclic nucleotides

1.4.3.2 Potassium channels

1.4.3.3 Chloride channels

1.5 Aim of the work

Chapter 2: Methods & Materials

2.1 Tissue preparation

2.2 Organ tissue culture

2.3 In vitro vascular reactivity studies

2.4 Measurement of NO release

2.5 Assay of SNP-induced cGMP production

2.6 Measurement of changes in $[\text{Ca}^{2+}]_i$ in isolated aortic VSMCs

2.6.1 Isolation of VSMCs

2.6.2 Measurement of $[\text{Ca}^{2+}]_i$

2.7 Immunoblotting

2.7.1 Tissue lysis

2.7.2 Determination of protein concentrations in lysates

2.7.3 Immunoblotting sample preparation

2.7.4 Polyacrylamide gel electrophoresis

2.7.5 Semi-dry transfer of proteins to nitrocellulose membrane

2.7.6 Antibody probing and immunoblot developing

2.7.7 Membrane stripping and reprobing

2.8 Quantitative RT-PCR

2.8.1 RNA isolation and purification

2.8.2 cDNA synthesis

2.8.3 Primers

2.8.4 PCR

2.8.5 Agarose Gel Electrophoresis

2.8.6 Real-time PCR

2.9 Data analysis

2.10 Materials
Chapter 3: LPS-induced Changes in Vascular Reactivity

3.1 Introduction
3.2 Methods
3.3 Effect of organ culture on vascular reactivity
3.4 Effect of LPS type on vascular reactivity changes
3.5 Effect of LPS concentration on vascular reactivity changes
3.6 Effect of incubation time on the mRNA expression iNOS
3.7 Effect of LPS on vascular reactivity to different vasoconstrictors
3.8 Discussion
3.9 Summary and conclusions

Chapter 4: Mediators Involved in LPS-induced Changes in Vascular Reactivity

4.1 Introduction
4.2 Methods
4.3 Effect of endothelium removal on LPS-induced changes in vascular reactivity to ET-1
4.4 Effect of COX-inhibition on LPS-induced changes in vascular reactivity to ET-1
4.5 Effect of ROS-inhibition on LPS-induced changes in vascular reactivity to ET-1
4.6 Role of NO in LPS-induced changes in vascular reactivity to ET-1
4.6.1 Effect of LPS on eNOS and iNOS gene expression
4.6.2 Effect of LPS on NO release
4.6.3 Effect of LPS on endothelium-dependent relaxation
4.6.4 Effect of LPS on endothelium-independent relaxation
4.6.5 Effect of LPS on NO-independent direct sGC activation
4.6.6 Effect of LPS on relaxation induced by PDE-resistant cGMP analogue
4.6.7 Effect of LPS on SNP-induced cGMP production
4.6.8 Effect of iNOS inhibition on LPS-induced changes in vascular reactivity to ET-1
4.6.9 Effect of sGC inhibition on LPS-induced changes in vascular reactivity to ET-1 ... 96
4.6.10 Effect of LPS on protein expression level of sGC subunits ... 96
4.6.11 Effect of LPS on relaxation responses induced by PDE5 inhibition ... 100
4.6.12 Effect of LPS on protein expression level of PDE5 ... 100
4.7 Discussion .. 103
4.8 Summary and conclusions ... 106

Chapter 5: Molecular Mechanisms Involved in LPS-induced Changes in Vascular Reactivity ... 109
5.1 Introduction .. 109
5.2 Methods .. 110
5.3 Effect of LPS-pretreatment on gene expression of ET-1, ET$_A$ and ET$_B$ in pulmonary and aortic vascular rings .. 111
5.4 Effect of external calcium removal on LPS-induced changes in vascular reactivity to ET-1 114
5.5 Effect of external Ca$^{2+}$ addition on LPS-induced changes in vascular reactivity to ET-1 114
5.6 Effect of VOCCs blocking on LPS-induced changes in vascular reactivity to ET-1 118
5.7 Effect of blocking of ROCCs and SOCCs on LPS-induced changes in vascular reactivity to ET-1 118
5.8 Effect of K$_{ATP}$ channels blocking on LPS-induced changes in vascular reactivity to ET-1 121
5.9 Effect of BK channels blocking on LPS-induced changes in vascular reactivity to ET-1 121
5.10 Effect of ROK$_\alpha$ inhibitor on LPS-induced changes in vascular reactivity to ET-1 124
5.11 Effect of PKC inhibitor on LPS-induced changes in vascular reactivity to ET-1 124
5.12 Effect of LPS-pretreatment on the expression of different proteins involved in Ca$^{2+}$-sensitization induced by ET-1 ... 127
5.13 Effect of LPS-pretreatment on $[\text{Ca}^{2+}]_i$ changes induced by ET-1 in isolated aortic VSMCs.................................130

5.14 Effect of protein synthesis inhibition on LPS-induced changes in vascular reactivity to ET-1..133

5.15 Discussion..134

5.16 Summary and conclusions..137

Chapter 6: Final Discussion & Conclusions...139

6.1 The model..139

6.2 The vasoactive mediators...140

6.3 The mechanisms...141

6.4 Final conclusions...144

6.5 Future work..144

References...145

Appendix..170
List of Tables

Table 1.1 Variability of LPS effects on vascular reactivity………………….7
Table 1.2 Variability of the role of NO in LPS-induced
changes in vascular reactivity……………………………………13
Table 1.3 Variability of the role of ET-1 in
LPS-induced changes in vascular reactivity………………….. ..21
Table 2.1 Composition of physiological salt solutions (PSS)……………..34
Table 2.2 Different vasoactive mediators and inhibitors
used in this study……………………………………………………36
Table 2.3 Enzymatic solution to separate aortic VSMCs………………….39
Table 2.4 Immunoblotting buffers…………………………………………41
Table 2.5 Recipes for electrophoresis gels………………………………..43
Table 2.6 Immunoblotting conditions for primary antibodies…………..45
Table 2.7 Reverse-transcriptase (RT) reaction mixture………………….47
Table 2.8 Primers used in this study……………………………………….48
Table 2.9 PCR reaction mixture…………………………………………..49
Table 2.10 PCR amplification cycles………………………………………49
Table 2.11 Lightcycler PCR program………………………………………52
List of Figures

Figure 1.1 LPS recognition and signalling………………………………………5
Figure 1.2 Schematic diagram of endothelins synthesis pathways…………16
Figure 1.3 Schematic diagram of signalling pathways of ET receptors……19
Figure 1.4 Schematic diagram of signal transduction pathways
involved in contraction of VSMCs……………………………………..23
Figure 3.1 Effect of organ culture on contractile responses to
ET-1 in pulmonary and aortic rings………………………………………63
Figure 3.2 Effect of LPS type on vascular reactivity of
the pulmonary artery and the aorta………………………………………64
Figure 3.3 Effect of LPS concentration on aortic hyporeactivity to ET-1….66
Figure 3.4 Effect of LPS incubation on mRNA expression of
iNOS in the pulmonary artery and aorta………………………………67
Figure 3.5 Effect of LPS on contractile responses to ET-1
in the pulmonary artery and the aorta………………………………….69
Figure 3.6 Effect of LPS on contractile responses to 80 mM KCl
in the pulmonary artery and the aorta…………………………………70
Figure 3.7 Effect of LPS on contractile responses to phenylephrine
in the pulmonary artery and the aorta………………………………….71
Figure 3.8 Effect of LPS on contractile responses to U46619
in the pulmonary artery and the aorta………………………………….72
Figure 4.1 Effect of removal of endothelium on LPS-induced changes in vascular
reactivity to ET-1 in the pulmonary artery and the aorta………………80
Figure 4.2 Effect of indomethacin on LPS-induced changes in vascular
reactivity to ET-1 in the pulmonary artery and the aorta………..82
Figure 4.3 Effect of trolox on LPS-induced changes in vascular reactivity
to ET-1 in the pulmonary artery and the aorta…………………..83
Figure 4.4 Representative PCR gel for eNOS, iNOS, ET-1, ET\textsubscript{A}, ET\textsubscript{B}
and β-actin genes…………………………………………………………85
Figure 4.5 Representative qRT-PCR standard curves and melting peaks
for eNOS, iNOS and β-actin genes………………………………………86
Figure 4.6 LPS-induced changes in gene expression of eNOS and iNOS in the pulmonary artery and the aorta……………………………87
Figure 4.7 Effect of LPS treatment on NO release from isolated rat pulmonary artery and aorta………………………………………89
Figure 4.8 Effect of LPS on ACh-induced relaxation in the pulmonary artery and the aorta……………………………………………90
Figure 4.9 Effect of LPS on SNP-induced relaxation in the pulmonary artery and the aorta……………………………………………91
Figure 4.10 Effect of LPS on BAY 41-2272-induced relaxation in the pulmonary artery and the aorta……………………………………93
Figure 4.11 Effect of LPS on 8-pCPT-cGMP-induced relaxation in the pulmonary artery and the aorta………………………………………94
Figure 4.12 Effect of LPS on SNP-induced cGMP production in the pulmonary artery and the aorta……………………………………………………………..95
Figure 4.13 Effect of 1400W on LPS-induced changes in vascular reactivity to ET-1 in the pulmonary artery and the aorta…………………97
Figure 4.14 Effect of ODQ on LPS-induced changes in vascular reactivity to ET-1 in the pulmonary artery and the aorta………………………………………98
Figure 4.15 Effect of LPS on protein expression levels of sGCα1 and sGCβ1, in the pulmonary artery and the aorta………………………………………..99
Figure 4.16 Effect of LPS treatment on T-0156-induced relaxation in the pulmonary artery and the aorta……………………………………101
Figure 4.17 Effect of LPS on the protein expression levels of PDE5………………102
Figure 5.1 Representative qRT-PCR standard curves and melting peaks for ET-1, ET_A and ET_B…………………………………………………………112
Figure 5.2 Effect of LPS on gene expression of ET-1, ET_A and ET_B in the pulmonary artery and the aorta……………………………………113
Figure 5.3 Effect of removal of external Ca^{2+} on LPS-induced changes in vascular reactivity to ET-1 in the pulmonary artery and the aorta.115
Figure 5.4 Representative control trace of contractile response to Ca^{2+} addition……………………………………………………………..116
Figure 5.5 Effect of LPS on contractile responses to Ca^{2+} addition in the pulmonary artery and the aorta preconstricted with ET-1……..117
Figure 5.6 Effect of LPS on relaxation responses to nifedipine in the pulmonary artery and the aorta...119

Figure 5.7 Effect of LPS on relaxation responses to 10 µM SKF-96365 in the pulmonary artery and the aorta..120

Figure 5.8 Effect of glibenclamide on LPS-induced changes in contractile responses to ET-1 in the pulmonary artery and aorta..............122

Figure 5.9 Effect of iberiotoxin on LPS-induced changes in contractile responses to ET-1 in the pulmonary artery and aorta...............123

Figure 5.10 Effect of Y-27632 on LPS-induced changes in contractile responses to ET-1 in the pulmonary artery and aorta.................125

Figure 5.11 Effect of Ro-31-8425 on LPS-induced changes in contractile responses to ET-1 in the pulmonary artery and aorta...........126

Figure 5.12 Effect of LPS on ET-1-induced phosphorylation of MLC_{20} in the pulmonary artery and aorta..128

Figure 5.13 Effect of LPS on the protein expression levels of PKC and the phosphorylation levels of ROKα, CPI-17 and MYPT1 in the pulmonary artery and aorta.................................129

Figure 5.14 Effect of LPS on ET-1-induced changes of [Ca^{2+}]_{i} in aortic VSMCs..131

Figure 5.15 Effect of Ca^{2+} addition, diltiazem, and SKF-96365 on ET-1-induced changes of [Ca^{2+}]_{i} in control and LPS-treated aortic VSMCs...............................132

Figure 5.16 Effect of cycloheximide on LPS-induced changes in contractile responses to ET-1 in the pulmonary artery and aorta........133

Figure 6.1 Simple scheme highlighting the findings of the present study...143
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[\text{Ca}^{2+}]_i$</td>
<td>Intracellular calcium</td>
</tr>
<tr>
<td>ACh</td>
<td>Acetylcholine</td>
</tr>
<tr>
<td>AngII</td>
<td>Angiotensin-II</td>
</tr>
<tr>
<td>BH$_4$</td>
<td>Tetrahydrobiopterin</td>
</tr>
<tr>
<td>BK</td>
<td>Large-conductance Ca$^{2+}$-activated K$^+$ (K_{Ca}) channels</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>CaMKII</td>
<td>Ca$^{2+}$/calmodulin-dependent protein kinase II</td>
</tr>
<tr>
<td>cGMP</td>
<td>3',5'-cyclic guanosine monophosphate (cGMP)</td>
</tr>
<tr>
<td>COX</td>
<td>Cyclooxygenase</td>
</tr>
<tr>
<td>CPI-17</td>
<td>PKC-potentiated phosphatase inhibitor protein-17 kDa</td>
</tr>
<tr>
<td>DAG</td>
<td>Diacylglycerol</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s modified Eagle’s medium</td>
</tr>
<tr>
<td>ECs</td>
<td>Endothelial cells</td>
</tr>
<tr>
<td>EDHF</td>
<td>Endothelium-dependent hyperpolarizing factor</td>
</tr>
<tr>
<td>E_{max}</td>
<td>Maximum response</td>
</tr>
<tr>
<td>eNOS</td>
<td>Endothelial nitric oxide synthase</td>
</tr>
<tr>
<td>ET-1</td>
<td>Endothelin-1</td>
</tr>
<tr>
<td>FAD</td>
<td>Flavin adenine dinucleotide</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish peroxidase</td>
</tr>
<tr>
<td>iNOS</td>
<td>Inducible nitric oxide synthase</td>
</tr>
<tr>
<td>IP$_3$</td>
<td>Inositol 1,4,5-trisphosphate</td>
</tr>
<tr>
<td>K_{ATP}</td>
<td>ATP-sensitive K$^+$ channels</td>
</tr>
<tr>
<td>LBP</td>
<td>LPS-binding protein</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-activated protein kinase</td>
</tr>
<tr>
<td>MLC$_{20}$</td>
<td>20 kDa regulatory myosin light chain</td>
</tr>
<tr>
<td>MLCK</td>
<td>Myosin light chain kinase</td>
</tr>
<tr>
<td>MLCP</td>
<td>Myosin light chain phosphatase</td>
</tr>
<tr>
<td>MYPT1</td>
<td>Myosin phosphatase targeting subunit 1</td>
</tr>
<tr>
<td>NADPH</td>
<td>Reduced nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>NF-κB</td>
<td>Nuclear factor-κB</td>
</tr>
</tbody>
</table>
NO Nitric Oxide
NSCCs Non-selective cation channels
O$_2^-$ Superoxide anion
PDE5 Phosphodiesterase-5
pEC$_{50}$ Negative log the concentration producing 50% of maximal response
PGI$_2$ Prostacyclin
PKA Protein kinase A
PKC Protein kinase C
PKG Protein kinase G
PLA$_2$ Phospholipase A$_2$
PLCβ Phospholipase Cβ
PLD Phospholipase D
PSS Physiological salt solution
qRT-PCR Quantitative reverse-transcriptase polymerase chain reaction
ROCCs Receptor-operated Ca$^{2+}$ channels
ROK/ROCK Rho-activated kinase
ROS Reactive oxygen species
SDS-PAGE Sodium dodecyl sulphate-polyacrylamide gel electrophoresis
SEM Standard error of mean
SERCA The sarcoplasmic reticulum (SR) Ca$^{2+}$-ATPase pump
sGC Soluble guanylyl cyclase
SNP Sodium nitroprusside
SOCCs Store-operated Ca$^{2+}$ channels
TBSN Tris-buffered saline-Nonidet-P40
TLR Toll-like receptors
TRP Transient receptor potential channel
TxA$_2$ Thromboxane A$_2$
VC Vasoconstriction
VD Vasodilation
VOCCs Voltage-operated Ca$^{2+}$ channels
VSMC Vascular smooth muscle cell
To my wife, my children
and the soul of my mother and my father
Chapter 1
Introduction
Chapter 1

1.1 Inflammation, Lipopolysaccharide and vascular reactivity

Inflammation is a series of local vascular and lymphatic changes occurring in
living organisms. The main features of the inflammatory response include
vasodilation, increased vascular permeability, cellular infiltration and activation of
cells of the immune system (Ryan & Majno, 1977). Inflammation normally leads to
recovery from infections, limits tissue injury and initiates healing and repair.
However, if inflammation is not properly controlled, it can lead to persistent tissue
damage (Webster & Galley, 2003). The role of vascular cells is critically important
in inflammatory diseases, including atherosclerosis, hypertension, ischemia-
reperfusion and septic shock (Tedgui & Mallat, 2001).

1.1.1 Inflammation and vascular reactivity

Cardiovascular homeostasis is, in part, governed by blood pressure, expressed
as the product of total peripheral resistance and cardiac output (Reddi & Carpenter,
2005). The contraction of vascular smooth muscle cells (VSMCs) controls vascular
tone, and thus regulates total peripheral resistance, blood pressure and tissue
perfusion. The vascular tone depends on a complex interplay between endothelial
cells (ECs) and VSMCs through the release of different vasoconstrictors
[endothelin-1 (ET-1), thromboxane A\textsubscript{2} (TxA\textsubscript{2}), prostaglandin H\textsubscript{2}, angiotensin-II (AngII) and superoxide anion (O\textsubscript{2}^{-})] and vasodilators [nitric oxide (NO),
endothelium-dependent hyperpolarizing factor (EDHF), prostacyclin (PGI\textsubscript{2}) and
prostaglandin E\textsubscript{2}] (Davis \textit{et al.}, 2003; Vila & Salaices, 2005).

Inflammatory stimuli, such as inflammatory cytokines and bacterial endotoxins,
have multiple and diverse effects on both ECs and VSMCs, leading to altered
vascular reactivity and selective permeability, leukocyte adhesion, platelet activation
and conversion to procoagulant state, VSMC proliferation and extracellular matrix
deposition (Tan \textit{et al.}, 1999; Aird, 2003).
One of the major examples of inflammatory diseases affecting the vascular system is sepsis, which is a complex dysregulation of inflammation arising when the host is unable to successfully contain an infection (Buras et al., 2005). Sepsis has two stages: an early hyperdynamic stage characterized by increased heart rate, cardiac output, vascular resistance and proinflammatory cytokines; and a later hypodynamic stage characterized by decreased heart rate, cardiac output and vascular resistance and increased levels of anti-inflammatory cytokines (Hoesel & Ward, 2004). Complications arising from sepsis include disseminated intravascular coagulation, systemic vascular collapse, multi-organ failure, and development of vascular leak syndromes, including acute respiratory distress syndrome (Bannerman & Goldblum, 2003). The two main vasomotor complications are septic shock and pulmonary hypertension (Parsons et al., 1989; Manthous et al., 1993; Lorente et al., 1993). The mechanism of this difference in vascular reactivity between the systemic and the pulmonary vascular beds in sepsis is unclear.

1.1.2 Lipopolysaccharide

Lipopolysaccharide (LPS) or endotoxin is a major component of the Gram-negative bacterial cell wall released, as example, by cell lysis. LPS is a di-phosphorylated polar macromolecule composed of an O-specific hydrophilic polysaccharides chain, a core oligosaccharide region and a hydrophobic lipid A component which is responsible for the proinflammatory properties of LPS (Alexander & Rietschel, 2001). LPS forms microaggregates in biologic fluids and then rapidly interacts with a variety of serum or membrane-bound lipophilic proteins (Opal, 2007). LPS is the key molecule involved in the initiation of sepsis. The administration of LPS, both in humans (Suffredini et al., 1989) and in animals (Ruetten et al., 1996; Peters & Lewis, 1996; Gardiner et al., 1996b), has been used as a model to study sepsis and septic shock.

1.1.2.1 LPS recognition and signalling

LPS binds to a 60-kDa LPS-binding protein (LBP) which is an acute phase protein primarily synthesized by hepatocytes (Schumann et al., 1990). The LPS-LBP
complex is recognized by CD14, which is either expressed by monocytes/macrophages (mCD14) or released as a soluble form by monocytes (sCD14) (Hiki et al., 1998). sCD14-LPS complexes have been shown to stimulate mCD14-negative cells, such as epithelial cells, ECs, fibroblasts and SMCs (Pugin et al., 1993; Heine et al., 2001). The CD14-LPS complexes induce cell signalling through toll-like receptors (TLRs) (Akira et al., 2006). Ten TLRs subtypes have been identified in human: TLR-4 mediates the responses to LPS, while TLR2 mediates responses to toxins from Gram-positive bacteria, yeast and mycobacteria (Akira et al., 2006). Endothelial cells express two of the known TLRs, predominantly TLR4 and very low levels of TLR2 and the expression of both is regulated by the transcription factor nuclear factor-κB (NF-κB) and interferon-γ (Faure et al., 2000). Activation of TLR4 leads to stimulation of both MyD88-dependent and MyD88-independent pathways (Figure 1.1). These pathways involve signalling through NF-κB, mitogen-activated protein kinases (MAPKs) and phosphatidylinositol-3-kinase (Dauphinee & Karsan, 2006).

Further LPS recognition molecules may involve CD11/CD18 (β2-integrin), selectins, scavenger receptors, membrane-organizing extension spike protein (moesin) and heptose-specific lipopolysaccharide receptors (Van Amersfoort et al., 2003). Generally, LPS recognition and signalling involve various membrane molecules as well as intracellular receptors (Heine et al., 2001). Different recognition systems such as scavenger receptors contribute to the clearance of LPS in the circulation mainly by Kupffer cells and hepatocytes in the liver (Hampton et al., 1991; Satoh et al., 2008).

1.1.2.2 LPS and inflammation

LPS is a powerful stimulator of inflammatory pathways with the generation of pro- and anti-inflammatory mediators, including cytokines, coagulation factors, cell adhesion molecules, myocardial depressants and heat shock proteins (Heine et al., 2001; Peters et al., 2003). The degree of cytokine expression in response to inflammatory stimuli such as LPS is principally regulated by NF-κB which is also responsible for the regulation of cell adhesion molecules, immunoreceptors,
procoagulants, acute phase proteins, NO production, and VSMCs migration and proliferation (Collins & Cybulsky, 2001).

Figure 1.1 LPS recognition and signalling. The main LPS signalling pathway through TLR is boxed, comprising both MyD88-dependent and -independent pathways, while alternative pathways are shown by shaded lines. AP-1, activator protein-1; CXCR4, chemokines receptor 4; DAP-12, DNAX-activating protein; ERK, extracellular signal-regulated kinase; GDF5, growth differentiation factor 5; hsp70/90, heat shock protein 70/90; IRAK, IL-1 receptor-associated kinase; IRF3, interferon (INF) regulatory factor 3; JNK, c-jun NH2-terminal kinase; K+, potassium channels; LBP, LPS-binding protein; MAPK, mitogen-activated protein kinase; MyD-88, myeloid differentiation factor 88; NF-κB, nuclear factor-κB; Nod2, nucleotide-binding oligomerization domain protein-2; RIP2, receptor interacting protein 2; TLR, Toll-like receptors; TRAF6, tumor necrosis factor (TNF) receptor-associated factor 6; TREM-1, Triggering receptor expressed on myeloid cells-1; TIR, TLR-IL-1 receptor domain (adapted from Heine *et al.*, 2001; Mitchell *et al.*, 2007).
1.1.2.3 LPS and vascular reactivity

Different models have been developed to study LPS-induced changes in vascular reactivity. Examples include in vitro models (McKenna, 1990; Hall et al., 1996; O'Brien et al., 2001; Piepot et al., 2002; Boer et al., 2005), in vivo models (Curzen et al., 1995; Gardiner et al., 1995; Ruetten et al., 1996; Griffiths et al., 1997; Mitaka et al., 1999; Hirata & Ishimaru, 2002) and ex vivo models using vessels harvested from endotoxic animals (Schneider et al., 1992; Gunnett et al., 1998; Wu et al., 2004). Although vascular hyporeactivity was induced by LPS in most models, some models using smaller rodent vessels were unable to demonstrate diminished responses to vasoconstrictors (Mitchell et al., 1993; Glembot et al., 1995; Wu et al., 2004). Table 1.1 represents the variability of vascular reactivity responses to LPS. This variability may be attributed to the difference in experimental models. However, different vascular beds respond variably to different vasoconstrictors in the same model (Piepot et al., 2002; Farmer et al., 2003), suggesting that complex mechanisms are present depending on the type of vascular bed and the vasoconstrictor. Exploring these mechanisms using a suitable model is important in understanding vascular reactivity changes induced by LPS.

Of the several mediators suspected to be involved in LPS-induced vascular reactivity changes, NO and ET-1 play major roles in systemic hypotension, vascular hyporesponsiveness and pulmonary hypertension induced by LPS (Pittet et al., 1991; Lorente et al., 1993; Szabo et al., 1995; Curzen et al., 1997; Liu et al., 1997; Fujii et al., 2000; Piechota et al., 2007).
Table 1.1 Variability of LPS effects on vascular reactivity

<table>
<thead>
<tr>
<th>Reference</th>
<th>Study type</th>
<th>Animal/human tissue</th>
<th>Main LPS-induced effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Biguad et al., 1990)</td>
<td>ex vivo</td>
<td>Rat aorta</td>
<td>- Hyporeactivity to phenylephrine, KCl, Bay K 8644 and calimycin</td>
</tr>
<tr>
<td>(Farmer et al., 2003)</td>
<td>ex vivo</td>
<td>Rat aorta, mesenteric and renal arteries</td>
<td>- Hyporeactivity to methoxamine in aorta and mesenteric, but not in renal arteries
- KCl, caffeine and U46619 not affected</td>
</tr>
<tr>
<td>(Umans et al., 1993)</td>
<td>ex vivo</td>
<td>Rat and rabbit aortas</td>
<td>- Hypocontractility to phenylephrine, AngII, KCl and serotonin
- Impaired relaxation to ACh and A23187</td>
</tr>
<tr>
<td>(Gardiner et al., 1996b)</td>
<td>in vivo</td>
<td>Rat</td>
<td>- Depressor and dilator effects of LPS infusion was opposed by AngII in first 1-2 h, ET-1 between 2-8h and vasopressin after 24 h</td>
</tr>
<tr>
<td>(Guc et al., 1990)</td>
<td>in vivo</td>
<td>Rat</td>
<td>- Hypocontractility to phenylephrine, vasopressin, cirazoline and serotonin, but not to ET-1</td>
</tr>
<tr>
<td>(Wakabayashi et al., 1987)</td>
<td>ex vivo</td>
<td>Rat aorta</td>
<td>- Hypocontractility to norepinephrine, KCl and serotonin</td>
</tr>
<tr>
<td>(Piepot et al., 2002)</td>
<td>in vitro</td>
<td>Rat coronary, mesenteric, hepatic and renal arteries</td>
<td>- Hyporeactivity to KCl in all vessels tested, to noradrenaline in mesenteric and hepatic and to U46619 in coronary</td>
</tr>
<tr>
<td>(Buyukafsar et al., 2004)</td>
<td>ex vivo</td>
<td>Rat mesenteric arteries</td>
<td>- Hyporeactivity to phenylephrine, AngII, but enhanced responses to ET-1</td>
</tr>
<tr>
<td>(Mitchell et al., 1993)</td>
<td>ex vivo</td>
<td>Rat perfused mesenteric vascular bed</td>
<td>- Responses to ET-1, phenylephrine, U46619 and serotonin were not affected</td>
</tr>
</tbody>
</table>
1.2 Nitric oxide

NO is one of the most ubiquitous substances in mammalian species, involved in the control of many cellular functions in different parts of the body. NO, being one of the most important endogenous vasodilators, plays an important role in inflammatory diseases. For example, it has been shown to contribute to the development of delayed hypotension, vasoplegia and acute lung injury in patients with septic shock (Manthous et al., 1993; Lorente et al., 1993; Feihl et al., 2001; Lopez et al., 2004) as well as in animals injected with LPS (Szabo et al., 1995; Griffiths et al., 1995; Bishop-Bailey et al., 1997).

The recognition that exogenous NO gas as well as NO generated from various nitrocompounds has biological activity through activating soluble guanylyl cyclase (sGC) and inducing smooth muscle relaxation (Arnold et al., 1977), was followed by the discovery of an endothelium-derived relaxing factor (EDRF) (Furchgott & Zawadzki, 1980). Ten years later, it was confirmed that NO represents EDRF in the vasculature (Ignarro et al., 1987).

1.2.1 Synthesis of NO

NO is synthesized from the amino acid L-arginine by a family of heme containing enzymes named the NO synthases (NOS) (Nathan & Hibbs, Jr., 1991). The substrate L-arginine is metabolized by NOS to produce NO in addition to L-citrulline (Ignarro et al., 1987; Michel & Feron, 1997). The synthesis of NO by NOS involves the transfer of electrons between various co-factors including molecular oxygen, flavin adenine dinucleotide (FAD) and mononucleotide, tetrahydrobiopterin (BH4), reduced nicotinamide adenine dinucleotide phosphate (NADPH) and a heme moiety, with one atom of oxygen finally binding with the terminal guanidine nitrogen from arginine to form NO (Stuehr, 1999). In addition, a small amount of NO is non-enzymatically produced from the chemical reduction of nitrite (Weitzberg & Lundberg, 1998).
1.2.2 NO synthases

At least 3 NOS isoforms have been identified, namely neuronal NOS (nNOS, or NOS I), inducible NOS (iNOS, or NOSII) and endothelial NOS (eNOS, or NOS III) (Alderton et al., 2001). Both nNOS and eNOS isoforms are constitutively expressed and are activated by calcium (Ca^{2+})-calmodulin. iNOS is regulated primarily at the transcriptional level, independent of agonist stimulation and intracellular Ca^{2+} ([Ca^{2+}]_i). Constitutive nNOS and eNOS require an increase in resting [Ca^{2+}]_i for their binding of calmodulin and subsequent full activation (Michel & Feron, 1997). However, iNOS is able to bind calmodulin with extremely high affinity even at the low [Ca^{2+}]_i characteristic of resting cells and therefore its activation is not regulated by alterations in [Ca^{2+}]_i (Xie & Nathan, 1994).

eNOS, expressed in ECs, is the predominant NOS isoform in the vessel wall (Alderton et al., 2001). ET-1 and Ang II (Li et al., 1999; Alderton et al., 2001) have been shown to upregulate eNOS expression. Cytokines and LPS, potent upregulators of iNOS expression, appear to have the opposite effect on eNOS (Li et al., 2002). At high concentrations, NO itself works in a negative feedback manner to inhibit both activity and expression of eNOS (Abu-Soud et al., 2000).

The [Ca^{2+}]_i required to activate constitutive NOS also inhibits GC (Coleman, 2001). Therefore cells in which constitutive NOS is activated cannot respond to the NO produced. Cells expressing iNOS probably utilise glutathione as their defence against NO (Coleman, 2001).

1.2.3 Metabolism of NO

NO is an extremely unstable molecule, remaining effective for only few seconds (Griffith et al., 1984), due to rapid oxidation of NO by O_2 and free oxygen radicals forming inactive nitrogen dioxide, which is converted to nitrite then nitrate. Both nitrite and nitrate are eliminated in urine within 5 hours, with basal nitrates concentration in blood 100 fold higher (30 mmol L^{-1}) than nitrites (Moncada & Higgs, 1993).
In the blood, NO is rapidly inactivated by binding to hemoglobin, forming methaemoglobin, therefore keeping the concentration of NO in the nanomolar range (Beckman & Koppenol, 1996). However, hemoglobin is rapidly regenerated by red blood cell methaemoglobin reductase with nitrate as a by-product. The high affinity of NO for hemoglobin and its inactivation by binding to hemoglobin means that its physiological actions remain localized to the site of its generation and are rapidly terminated (Anggard, 1994).

1.2.4 Mechanism of Action of NO

NO is a gas at physiological temperature and pressure, with a complete lack of reactivity with water making it lipophilic, and thus rapidly diffuses to interact with molecular targets in cells in the vascular wall and lumen (Grisham et al., 1999; Hughes, 2008). NO interacts with metal centres and thiol groups within diverse protein targets, including membrane receptors, ion channels, cytosolic enzymes, and transcription factors such as AP-1 and NF-κB (Stamler, 1994). S-Nitrosylation of thiol groups in plasma proteins such as albumin generates a circulating pool of NO-donating groups (Keaney, Jr. et al., 1993), whereas S-nitrosylation of hemoglobin in the lung provides nitrosothiol groups to the peripheral vasculature and regulates oxygen delivery (Gow et al., 1999).

The most important receptor molecule for NO is NO-sensitive sGC, which catalyzes the formation of 3',5'-cyclic guanosine monophosphate (cGMP). The biological effects of cGMP are mediated by protein kinase G (PKG), cGMP-gated ion channels and cGMP-regulated phosphodiesterases (PDEs) (Beavo, 1995; Hofmann et al., 2006). The amplitude and duration of a cGMP signal are determined by the activity of sGC, a heterodimeric cGMP-forming enzyme, and PDEs which degrade cGMP (Juilfs et al., 1999). Only two sGC isoforms, α1/β1 and α2/β1 exist with the α1/β1 sGC heterodimer being the predominant isoform in most tissues including lung (Friebe & Koesling, 2003). The major cGMP-degrading PDE isoform in vascular smooth muscle is the cGMP-binding PDE5 (Beavo, 1995; Maurice et al., 2003).
1.2.5 Dysfunction of NO pathway

Dysfunction of NO can occur as a result of decreased production, enhanced degradation and decreased sensitivity. In vascular diseases such as hypertension and atherosclerosis, the NO substrate L-arginine may be depleted secondary to an increase in arginase activity (Loscalzo, 2000). In addition, asymmetric dimethylarginine can act as an endogenous competitive NOS inhibitor (Cooke, 2000). At suboptimal concentrations of the cofactor BH₄ or the substrate L-arginine, NOS becomes 'uncoupled', leading to the production of O₂⁻ and hydrogen peroxide thus decreasing NO production and increasing its inactivation (Xia et al., 1998; Cai & Harrison, 2000). Furthermore, dysfunction of the NO pathway can occur by a decrease in the expression of eNOS (Alderton et al., 2001).

The interaction between NO and O₂⁻ or lipid peroxides deplete NO levels by directly forming peroxynitrites or indirectly by attenuating NO release (Hogg & Kalyanaraman, 1999; Cai & Harrison, 2000). Oxidized LDL, hypertension, ageing and hyperglycaemia have all been shown to decrease the expression of sGC (Friebe & Koesling, 2003). Altering the redox state of sGC itself makes it unresponsive to both endogenous and exogenous NO (Stasch et al., 2006).

1.2.6 Physiological effects of NO

Direct NO effects occur at low (nanomolar) concentrations of NO resulting from the constitutive NOS isoforms. These include relaxation of vascular and non-vascular smooth muscle, inhibition of platelet aggregation, and inhibition of leukocyte adhesion to the endothelium (Nathan & Xie, 1994). NO, at high concentrations produced from iNOS, competes with O₂ leading to inhibition of constitutive isoforms of NOS (Griscavage et al., 1995), and downregulates the activity of key enzymes in oxidative metabolism, thus negatively influencing cellular energetics in conditions such as sepsis (Gardner et al., 1997). In contrast with this potentially deleterious action, NO may be highly protective against oxidative stress by scavenging several free radicals such as O₂⁻, hydroxyl radical and hydrogen peroxide (Grisham et al., 1999).
Chapter 1-Introduction

Indirect effects of NO occur at high (micromolar) concentrations of NO resulting from iNOS through the formation of other mediators. These involve the carcinogenic compounds N-nitrosamines (Hecht, 1997), and S-nitrosothiols that play significant roles in a large number of biological processes (Broillet, 1999). In addition, the highly reactive and cytotoxic oxidant species peroxynitrite depletes glutathione, nitrates tyrosine residues in proteins and causes DNA damage and activation of the nuclear enzyme poly(ADP-ribose) polymerase, a pathway increasingly recognized as a major mechanism of NO/peroxynitrite-mediated cytotoxicity (Szabo & Dawson, 1998).

1.2.7 Role of NO in inflammation and sepsis

NO may exert either anti- or pro-inflammatory effects. NO is proinflammatory at low concentrations by inducing vasodilation and the recruitment of neutrophils, whereas at high concentrations it downregulates cell adhesion molecules, suppresses activation and induces apoptosis of inflammatory cells (Coleman, 2001). NO can interact with the pathways of gene expression controlled by the transcription factor NF-kB. When activated by various extracellular inflammatory triggers (e.g., stimulation of CD14 by LPS), NF-kB translocates to the nucleus, where it induces the transcription of numerous genes coding for proteins involved in inflammation, such as cytokines, cell adhesion molecules, and iNOS (Janssen-Heininger et al., 2000). Both activation (Kalra et al., 2000) and inhibition (DelaTorre et al., 1997) of NF-kB activity by NO have been described.

Excessive NO production, derived mainly from iNOS, has been shown to contribute to the development of delayed hypotension, vasoplegia and acute lung injury in patients with septic shock (Feihl et al., 2001; Lopez et al., 2004) as well as in animals injected with LPS (Szabo et al., 1995; Bishop-Bailey et al., 1997). Different strategies have been used to control excessive NO production in sepsis, such as inhibiting NO production with various NOS inhibitors or by inhibiting NO-dependent pathways such as sGC, however results have been conflicting. Table 1.2 represents variable results relating to the involvement of NO in LPS-induced vascular dysfunction.
Table 1.2 Variability of the role of NO in LPS-induced changes in vascular reactivity

<table>
<thead>
<tr>
<th>Reference</th>
<th>Study type</th>
<th>Animal/human tissue</th>
<th>Main findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Peters & Lewis, 1996)</td>
<td>in vivo</td>
<td>Rat hindquarter bed</td>
<td>- Relaxation responses to ACh and sodium nitroprusside (SNP) impaired by LPS</td>
</tr>
<tr>
<td>(Parker et al., 1994)</td>
<td>ex vivo</td>
<td>Guinea pig aorta</td>
<td>- Relaxation responses to ACh, but not to SNP, impaired by LPS</td>
</tr>
<tr>
<td>(Mitolo-Chieppa et al., 1996)</td>
<td>ex vivo</td>
<td>Rat perfused mesenteric vascular bed</td>
<td>- L-NAME failed to restore reactivity to norepinephrine after LPS</td>
</tr>
<tr>
<td>(Yen et al., 1995)</td>
<td>ex vivo</td>
<td>Rat aorta</td>
<td>- L-NAME and aminoguanidine partially restored reactivity to norepinephrine after LPS</td>
</tr>
<tr>
<td>(Hernanz et al., 2004)</td>
<td>in vitro</td>
<td>Rat superior mesenteric artery</td>
<td>- 1400W restored reactivity to noradrenaline after LPS</td>
</tr>
<tr>
<td>(Boyle, III et al., 2000)</td>
<td>ex vivo</td>
<td>Mouse mesenteric resistance arteries</td>
<td>- iNOS knockout protected against LPS-induced hyporeactivity to norepinephrine</td>
</tr>
<tr>
<td>(Virdis et al., 2005)</td>
<td>ex vivo</td>
<td>Rat mesenteric resistance arteries</td>
<td>- LPS increases iNOS mRNA, but eNOS not affected</td>
</tr>
<tr>
<td>(Tsai et al., 2006)</td>
<td>ex vivo</td>
<td>Rat pulmonary artery and aorta</td>
<td>- LPS increases iNOS mRNA in the pulmonary artery, but not the aorta</td>
</tr>
</tbody>
</table>
1.3 Endothelins

ET-1, being the most powerful endogenous vasoconstrictor identified to date, has been suggested to play an important role in vascular changes in diseases involving inflammation, such as sepsis and associated syndromes and pulmonary hypertension (Wanecek et al., 2000; Luscher & Barton, 2000; Dhaun et al., 2007). ET-1 was isolated, characterized and cloned from the culture medium of porcine ECs (Yanagisawa et al., 1988). ET-1 was subsequently demonstrated to be one of a family of potent vasoactive peptides, designated ET-1, ET-2 and ET-3, which have been shown to be encoded by three distinct genes (Inoue et al., 1989). A similar peptide has been discovered following genomic cloning in mice (Saida et al., 1989) and termed vasoactive intestinal contractor or β-endothelin. This has subsequently been found to be a murine and rat homolog of human ET-2 (Bloch et al., 1991). Apart from this example, data suggest that there are little interspecies differences in the sequences of the ET subtypes.

1.3.1 ET structure

ETs are 21 amino acid peptides containing four cysteine residues forming two disulphide bonds between Cys\(^1\)-Cys\(^{15}\) and Cys\(^3\)-Cys\(^{11}\), which hold the peptide chains in a hairpin loop configuration (Inoue et al., 1989). ET-2 differs from ET-1, the major isoform, by 2 amino acids, while ET-3 differs from ET-1 by 6 amino acids (Figure 1.2).

The three ETs isopeptides show a remarkable resemblance, both in structure (~67% sequence homology) and biological activity, to sarafotoxins, a family of peptides isolated from the venom of *Atractaspis engaddensis* (Landan et al., 1991).

1.3.2 ET biosynthesis and secretion

ET isopeptides arise from post-translational, proteolytic processing of large precursor peptides termed preproendothelins -1, -2 and -3, which consists of approximately 200 amino acids (Yanagisawa et al., 1988; Itoh et al., 1988). The preproETs undergo cleavage to produce a 38 (human) or 39 (porcine) amino acid
peptides known as bigETs (proETs) (Figure 1.2). The bigETs are then cleaved at Trp21-Val22 by ET converting enzymes (ECEs) to produce the active peptides (Schmidt et al., 1994; Emoto & Yanagisawa, 1995).

ET-1 is the main isoform released from the endothelium, and is also produced by airway epithelial cells, VSMCs, macrophages, fibroblasts, cardiomyocytes and neurons (Nakamura et al., 1990; Luscher & Barton, 2000). ET-2 is expressed by intestinal epithelial cells, while ET-3 is produced by brain neurons, intestinal epithelial cells and renal tubular epithelial cells (Matsumoto et al., 1989; Kedzierski & Yanagisawa, 2001).

Regulation of the ET system takes place mainly at the synthesis level, particularly during transcription, because cells do not store endothelins (Matsumoto et al., 1989; Teder & Noble, 2000; Hynynen & Khalil, 2006; Dhaun et al., 2007). ET-1 mRNA can be upregulated or downregulated by several factors (Figure 1.2).

1.3.3 ET metabolism/clearance

ET-1 concentration in vascular tissue is approximately 100 times higher than that in plasma and its half life in blood is 4 to 7 minutes because of quick binding to tissues and rapid metabolism by neutral endopeptidase present in the lung, kidney and central nervous system (Abassi et al., 1992; Mateo & De Artinano, 1997). Other forms of ET metabolism may involve its uptake and lysosomal targeting by endothelial ET$_B$ receptors that could function as “clearance receptors” (Bremnes et al., 2000; Kedzierski & Yanagisawa, 2001).

Prolonged exposure of cells to ET can lead to a reduction in the responsiveness to a second exposure to ET i.e. desensitization can occur (Le Monnier de Gouville & Cavero, 1991). It has been shown also that ETs can indirectly decrease the stability of ET$_B$ receptor mRNA (Sakurai et al., 1992) and alter receptor expression, leading to receptor internalization/downregulation (Marsault et al., 1991).
Figure 1.2 Schematic diagram of endothelins synthesis pathways. Amino acids in dark circles are different compared to ET-1. ANP, atrial natriuretic peptide; ECE, endothelin-converting enzyme; ET, endothelin; MP, metalloprotease; oxLDL, oxidised LDL (adapted from (Luscher & Barton, 2000; Hynynen & Khalil, 2006; Dhaun et al., 2007)).
1.3.4 ET receptors

There are two main known ET receptors, ET\textsubscript{A} and ET\textsubscript{B}, in addition to another two proposed ones, ET\textsubscript{C} and ET\textsubscript{AX}. ET\textsubscript{A} and ET\textsubscript{B} receptors are widely expressed in vascular tissues, airway smooth muscle, cardiomyocytes, hepatocytes, neurons, osteoblasts, reproductive system and some regions of the kidney (Kedzierski & Yanagisawa, 2001). ET\textsubscript{A} and ET\textsubscript{B} share 63% amino acid identity and are encoded by distinct genes located on chromosomes 4 and 13, respectively (Hynynen & Khalil, 2006). In VSMCs, the ET\textsubscript{A}/ET\textsubscript{B} ratio is often considered to increase with vessel size (Kirkby et al., 2008). ET\textsubscript{A} receptors mediate vasoconstriction and cell proliferation and show a great affinity for ET-1 and ET-2 over ET-3 (Luscher & Barton, 2000). The prolonged persisting contractile response mediated through ET\textsubscript{A} receptors may be due its extremely slow dissociation from ET-1, which acts essentially as an irreversible ligand (Bremnes et al., 2000). ET\textsubscript{B} receptors show equal affinity for ET isoforms and are important for ET clearance, EC survival, release of NO and PGI\textsubscript{2}, inhibition of ECE-1 and promotion of natriuresis and diuresis (Nakamura et al., 1991; Dhaun et al., 2007). The ET\textsubscript{C} receptor has been cloned from Xenopus leavis dermal melanophores and shows selectivity for ET-3 over ET-1 (Karne et al., 1993), and an ET\textsubscript{AX} receptor has been cloned from Xenopus heart (Kumar et al., 1994). ET\textsubscript{C} and ET\textsubscript{AX} receptors have no mammalian equivalent (Kirkby et al., 2008).

Based on their in vivo pharmacology, ET\textsubscript{B} receptors have been subdivided into ET\textsubscript{B1}, located on the ECs and mediating vasorelaxation through release of NO and PGI\textsubscript{2}, and ET\textsubscript{B2}, located directly on the VSM and mediating vasoconstriction (Sudjarwo et al., 1993).

1.3.5 ET receptor-mediated signalling pathways

ET peptides evoke complex, tightly regulated pathways of signal transduction that result in both short-term (e.g. contraction, secretion) and long-term (e.g. mitogenesis) biological effects. ET receptors belong to the superfamily of seven transmembrane receptors linked to G proteins (Davenport et al., 1995). ET\textsubscript{A} receptors are functionally coupled to G\textsubscript{q/11} protein to activate phospholipase C\textbeta (PLC\textbeta), and to G\textsubscript{i} protein to inhibit adenylyl cyclase (Figure 1.3) (Robin et al.,
ET_A receptor-mediated activation of G_{q/11} and PLC_β result in the breakdown of phosphatidylinositol 4,5-bisphosphate, and the generation of inositol 1,4,5-trisphosphate (IP_3) and diacylglycerol (DAG). IP_3 acts on specific receptors on the [Ca^{2+}]_i stores and stimulates Ca^{2+} release, while DAG stimulates protein kinase C (PKC) activity (Neylon, 1999; McNair et al., 2004).

ET also activates plasma membrane Ca^{2+} channels, including voltage-operated Ca^{2+} channels (VOCCs), receptor-operated Ca^{2+} channels (ROCCs) and store-operated Ca^{2+} channels (SOCCs), and thus stimulates Ca^{2+} influx from the extracellular space (Miwa et al., 2005). ET_A receptor stimulation can also activate phospholipase D (PLD) with generation of DAG, phospholipase A_2 (PLA_2) resulting in release of arachidonic acid, the Na^+/H^+ exchanger, as well as tyrosine kinases, MAPKs and phosphatidylinositol 3-kinase (Hynynen & Khalil, 2006) that are involved both in vasoconstriction and mitogenesis (Figure 1.3). ET-1 has also been shown also to inhibit ATP-sensitive K^+ (K_{ATP}) channels (Satoh, 1995).

Stimulation of endothelial ET_B receptors activates signalling pathways that promote the release of relaxing factors such as NO, PGI_2 and EDHFs (Figure 1.3). The ET_B receptor-mediated release of NO from ECs may account for the transient vasodilator action of ET-1.

1.3.6 ET physiological and pathophysiological actions

ETs are postulated to be involved in the maintenance of basal vascular tone, regulation of water balance, local and systemic role in haemorrhage, and paracrine-, autocrine-, and endocrine signalling, embryonic development, gastrointestinal and endocrine function and prostate growth (Rubanyi & Polokoff, 1994; Luscher & Barton, 2000). Pathological conditions thought to involve ETs include coronary and cerebral vasospasm, myocardial ischemia, congestive heart failure, sepsis and associated syndromes, gastric ulceration, bronchial asthma and pulmonary hypertension (Wanecek et al., 2000; Luscher & Barton, 2000; Dhaun et al., 2007; Kirkby et al., 2008).
Figure 1.3 Schematic diagram of signalling pathways of (a) ET_A and (b) ET_B receptors. AC, adenylyl cyclase; CaD, caldesmon; CaM, calmodulin; CaP, calponin; COX, cyclooxygenase; DAG, diacylglycerol; ER, endoplasmic reticulum; ET, endothelin; GC, guanylyl cyclase; GEF, guanine nucleotide exchange factor; IP₃, inositol 1,4,5-trisphosphatase; MAPK, mitogen-activated protein kinase; MEK, MAPK kinase; MLCK, myosin light chain kinase; MLCP, MLC phosphatase; NO, nitric oxide; PGI₂, prostacyclin; PKC, protein kinase C; PLC_β, phospholipase C_β; ROCKII, Rho-Kinase II; SR, sarcoplasmic reticulum (adapted from (Luschere & Barton, 2000; Hynynen & Khalil, 2006; Dhaun et al., 2007)).
Chapter 1-Introduction

1.3.7 ET interactions with NO

There are close interactions between NO and ET-1 in the vascular wall. NO inhibits the production of ET-1 in ECs (Boulanger & Luscher, 1990) and ET-1 is known to stimulate the release of NO via activation of the ET_B receptors located on ECs (Clozel et al., 1992). However, ET-1 may reduce the bioavailability of NO in the vessel wall, through increasing O₂– production (Maczewski & Beresewicz, 2000). ET-1 may also reduce iNOS activity (Ikeda et al., 1997), an effect that can be restored in dogs by dual ET_A/ET_B receptor blockade (Shaw et al., 2001).

1.3.8 ET role in inflammation and sepsis

ET-1 is suggested to act as a proinflammatory cytokine because it stimulates macrophages and monocytes to release ROS and cytokines (McMillen & Sumpio, 1995; Fujii et al., 2000; Luscher & Barton, 2000). ET-1 also induces neutrophil adhesion, platelet aggregation, chemotaxis of macrophages, and mast cell activation (McMillen & Sumpio, 1995; Fujii et al., 2000; Luscher & Barton, 2000). In addition, ET-1 has been shown to have mitogenic activity for SMCs, myocytes and fibroblasts (Battistini et al., 1993).

ET-1 is suggested to play an important role in the inflammatory response to sepsis since plasma ET-1 levels are elevated in animal models of sepsis (Takahashi et al., 1990; Weitzberg et al., 1996; Mitaka et al., 1999; Fujii et al., 2000; Hirata & Ishimaru, 2002) and in septic patients, where its level correlates with the severity of illness (Pittet et al., 1991). Also, vascular ET-1 mRNA expression and arterial ET-1 concentration are elevated after LPS treatment in rats (Curzen et al., 1997).

Interestingly, the use of different ET receptors antagonists to counteract the increased ET-1 levels in sepsis has resulted in conflicting results (Gardiner et al., 1995; Weitzberg et al., 1996; Curzen et al., 1997; Fujii et al., 2000; Hirata & Ishimaru, 2002; Konrad et al., 2004). Table 1.3 represents variable results relating to the involvement of ET in in LPS-induced vascular dysfunction.
Table 1.3 Variability of the role of ET-1 in LPS-induced changes in vascular reactivity

<table>
<thead>
<tr>
<th>Reference</th>
<th>Study type</th>
<th>Animal/human tissue</th>
<th>Main findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Ros et al., 1997)</td>
<td>in vitro</td>
<td>Human vascular ECs</td>
<td>- LPS increases ET-1 release in culture medium</td>
</tr>
<tr>
<td>(Schuetz et al., 2007)</td>
<td>in vivo</td>
<td>Human</td>
<td>- Plasma ET-1 increases in sepsis and its levels correlate with severity of sepsis</td>
</tr>
<tr>
<td>(Forni et al., 2005)</td>
<td>ix vivo</td>
<td>Pig</td>
<td>- LPS treatment increases plasma ET-1 levels</td>
</tr>
<tr>
<td>(Curzen et al., 1997)</td>
<td>ex vivo</td>
<td>Rat pulmonary artery and aorta</td>
<td>- LPS increases ET-1 mRNA and protein levels</td>
</tr>
<tr>
<td>(Gardiner et al., 1996a)</td>
<td>in vivo</td>
<td>Rat</td>
<td>- Non-selective ET<sub>A</sub>/ET<sub>B</sub> blocker increases hypotension induced by LPS</td>
</tr>
<tr>
<td>(Wanecek et al., 1997)</td>
<td>in vivo</td>
<td>Pig</td>
<td>- Non-selective ET<sub>A</sub>/ET<sub>B</sub> blocker abolishes pulmonary hypertension induced by LPS, but plasma ET-1 levels remains elevated</td>
</tr>
<tr>
<td>(Ruetten et al., 1996)</td>
<td>in vivo</td>
<td>Rat</td>
<td>- Selective ET<sub>A</sub> blocker do not attenuate hypotension and vascular hyporeactivity induced by LPS</td>
</tr>
</tbody>
</table>
1.4 Regulation of VSM contraction

Since vascular reactivity is changed in inflammation, the identification of mechanisms that control VSM contraction are important to understand how inflammatory stimuli, either directly or through the release of vasoactive mediators, affect vascular tone. The contraction of VSM is primarily regulated by the reversible phosphorylation of the 20 kDa regulatory myosin light chain (MLC$_{20}$) (Ikebe et al., 1987). MLC$_{20}$ is specifically phosphorylated by Ca$_2^+$/calmodulin-dependent myosin light chain kinase (MLCK), which in turn is activated by the release of Ca$_2^+$ from internal stores (Adelstein & Hathaway, 1979; Sommerville & Hartshorne, 1986) or the influx of Ca$_2^+$ across the plasmalemma through different Ca$_2^+$ channels (Hughes, 1995). The degree of MLC$_{20}$ phosphorylation is further regulated by myosin light chain phosphatase (MLCP) (Bialojan et al., 1985; Haeberle et al., 1985).

When a greater contraction is produced for a given elevation of [Ca$_2^+$], this phenomenon is referred to as “Ca$_2^+$ sensitization of the contractile apparatus”, which occurs with several receptor-mediated contractile stimulations (Somlyo & Somlyo, 1994). Therefore, vascular tone depends on the regulation of [Ca$_2^+$]$_i$ and Ca$_2^+$ sensitization of the contractile apparatus (Figure 1.4). This section will describe the principal mechanisms regulating VSM contraction.
Figure 1.4 Schematic diagram of signal transduction pathways involved in contraction of VSMCs. A, agonist; AA, arachidonic acid; CaM, calmodulin; CaMKII, Ca\(^{2+}\)/CaM-dependent protein kinase II; CPI-17, PKC-potentiated phosphatase inhibitor protein-17 kDa; DAG, diacylglycerol; GEF, guanine nucleotide exchange factor; GPCR, G protein-coupled receptor; IP\(_3\), inositol 1,4,5- trisphosphate; MAPK, mitogen-activated protein kinase; MEK, MAPK kinase R, receptor; MLCK, myosin light chain kinase; MYPT1, myosin phosphatase targeting subunit 1; PKC, protein kinase C; PLA\(_2\), phospholipase A\(_2\); PLC\(\beta\), phospholipase C\(\beta\); PP1C\(\delta\), \(\delta\)-isoform of type 1 protein phosphatase catalytic subunit; ROCK, Rho-activated kinase (adapted from (Salamanca & Khalil, 2005; Woodsome et al., 2006)).
Chapter 1 - Introduction

1.4.1 Intracellular Ca\(^{2+}\) regulation

At rest, [Ca\(^{2+}\)]\(_i\) is much lower within VSMCs than in the extracellular fluid (Orallo, 1996). In response to vasoconstrictor stimuli, Ca\(^{2+}\) is mobilized from either intracellular stores such as the sarcoplasmic reticulum (SR) or the extracellular space to increase [Ca\(^{2+}\)]\(_i\) in VSMCs. The majority of contractile agonists such as norepinephrine, AngII, ATP and ET-1 evoke contraction via binding to G-protein-coupled receptors to activate PLC-\(\beta\) resulting in the breakdown of phosphatidylinositol 4,5-bisphosphate and the generation of IP\(_3\) and DAG (Sanders, 2001). IP\(_3\) diffuses from the cell membrane into the cytosol and stimulates IP\(_3\)-sensitive receptors (IP\(_3\)R) on SR to release Ca\(^{2+}\) (Neylon, 1999; McNair et al., 2004). The IP\(_3\)-mediated increase in [Ca\(^{2+}\)]\(_i\), in turn, may induce further Ca\(^{2+}\) release from SR via a Ca\(^{2+}\)-induced Ca\(^{2+}\)-release mechanism (McPherson & Campbell, 1993). DAG, which can also be generated by the PLD-mediated hydrolysis of phosphatidylcholine, remains in the cell membrane and stimulates PKC activity (Galizzi et al., 1987). Thus, the initial rapid phasic component observed in contractile response to these agonists reflects the IP\(_3\)-mediated Ca\(^{2+}\) release from the SR, followed by a tonic increase in [Ca\(^{2+}\)]\(_i\), which is dependent on extracellular Ca\(^{2+}\) (Hashimoto et al., 1986; Karaki et al., 1997).

1.4.1.1 Ca\(^{2+}\) release from SR

In VSMCs, Ca\(^{2+}\) is stored intracellularly in the SR, which contains at least two types of voltage-independent Ca\(^{2+}\)-release channels, those sensitive to IP\(_3\) (IP\(_3\)R) and those sensitive to the plant alkaloid ryanodine (ryanodine receptor, RyR) (Iino, 1990; Laporte & Laher, 1997). The IP\(_3\)R function can be modulated by [Ca\(^{2+}\)]\(_i\), cytosolic ATP and phosphorylation by various protein kinases, including cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase (protein kinase A, PKA) and PKC (Marin et al., 1999). The RyR is regulated mainly by Ca\(^{2+}\) in addition to cyclic adenosine diphosphoribose (McPherson & Campbell, 1993; Jaggar et al., 1998; Lesh et al., 1998).
Chapter 1-Introduction

1.4.1.2 Ca$^{2+}$ influx across the plasmalemma

VOCCs, ROCCs and SOCCs are responsible for Ca$^{2+}$ influx across the plasmalemma. L-type channels are the most important VOCCs and the most important route of Ca$^{2+}$ influx in VSMC (Hofmann et al., 1994). Contractile agonists may directly activate non-selective cation channels (NSCCs), and thereby cause membrane depolarization (Guibert et al., 2008). On the other hand, Ca$^{2+}$ released from the SR and/or entering through NSCCs may activate Ca$^{2+}$-dependent cation channels and/or Cl$^{-}$ channels, eliciting membrane depolarization. However, the rise in [Ca$^{2+}$]$_i$ could also activate Ca$^{2+}$-dependent K$^+$ channels, thus opposing the depolarizing effects of the activation of Ca$^{2+}$-dependent Cl$^{-}$ channels (Nilsson, 1998).

ROCCs may be subdivided into ligand-gated Ca$^{2+}$ channels and second messenger-operated Ca$^{2+}$ channels (Somlyo & Somlyo, 1968; Bolton, 1979; Felder et al., 1994). The ligand-gated Ca$^{2+}$ channels are probably NSCCs with some degree of selectivity for divalent cations, coupled to specific receptors and are directly activated by receptor agonists, including ATP, norepinephrine, vasopressin, ET, AngII, and serotonin (Orallo, 1996; Nilsson, 1998). Second messenger-operated Ca$^{2+}$ channels are indirectly activated by diffusible second messengers such as IP$_3$, or Ca$^{2+}$ following receptor activation, but there is limited evidence for their existence in VSMCs (Felder et al., 1994; Hughes, 1995).

Depletion of the intracellular SR Ca$^{2+}$ stores by diverse mechanisms (receptor agonists, Ca$^{2+}$-induced Ca$^{2+}$-release activators, SR-Ca$^{2+}$ ATPase inhibitors, Ca$^{2+}$ ionophores) has been reported to cause capacitive Ca$^{2+}$ entry through SOCCs in a wide range of cell types, including VSMCs (Gibson et al., 1998; Putney, Jr., 1999). Unlike receptor-operated NSCCs, SOCCs are highly selective for Ca$^{2+}$ over other cations (Hoth & Penner, 1992). Transient receptor potential (TRP) channels have been suggested as excellent candidates for SOCCs and also ROCCs in mammalian cells (Walker et al., 2001; Clapham et al., 2001). Current research suggests that TRP1, TRP3, TRP6, and TRP7 encode NSCCs, that TRP2, TRP4, and TRP5 are SOCCs, and that TRP3, TRP4, TRP6, and TRP7 can be expressed in VSMCs (Walker et al., 2001; Clapham et al., 2001).
Chapter 1-Introduction

1.4.1.3 Mechanisms that reduce [Ca$^{2+}$]$_i$

Several mechanisms exist that reduce cytosolic free Ca$^{2+}$ level, including the plasma membrane Ca$^{2+}$-ATPase (PMCA) pump, the SR Ca$^{2+}$-ATPase (SERCA) pump, the Na+/Ca$^{2+}$ exchanger (NCX), and cytosolic Ca$^{2+}$-binding proteins (Juhaszova et al., 1996; Laporte & Laher, 1997).

PMCA utilizes energy from ATP hydrolysis to produce Ca$^{2+}$ efflux. The PMCA activity can be increased by binding to CaM and phosphorylation by several protein kinases such as PKA, PKC, cGMP-dependent protein kinase (protein kinase G; PKG) and Ca$^{2+}$/CaM-dependent protein kinase (CaMK), while autoinhibition occurs when CaM is absent (Gonzalez et al., 1996).

Like the PMCA, the SERCA pump also utilizes the energy supplied by the hydrolysis of ATP to accumulate Ca$^{2+}$ inside the SR. Once Ca$^{2+}$ is taken up into the SR lumen, it is bound by several small hydrophilic proteins, such as calreticulin or calsequestrin that are capable of binding large amounts of Ca$^{2+}$ (Marin et al., 1999). The SERCA pump is regulated by the transmembrane protein phospholamban and sarcosplin, instead of CaM (Traaseth et al., 2008). The phosphorylation of phospholamban by PKA, PKG and CaMK increases SERCA Ca$^{2+}$ affinity and the rate of its Ca$^{2+}$ transport (Raeymaekers et al., 1990; Traaseth et al., 2008).

The NCX may contribute to either Ca$^{2+}$ extrusion or even Ca$^{2+}$ influx, depending on the conditions, and its physiological significance in VSMCs has been questioned (Juhaszova et al., 1996).

The myoplasma of the smooth muscle contains many Ca$^{2+}$-binding proteins that may provide a mechanism for the rapid removal of Ca$^{2+}$ and limiting its diffusion (Horowitz et al., 1996). These include CaM, troponin C, saponin, calbindin, calretinin, parvalbumin and the annexin family (Heizmann, 1992; Niki et al., 1996). The myoplasma also contains many inorganic compounds or other small organic molecules such as amino acids, nucleotides and organic acids which have the ability to bind to Ca$^{2+}$ (Toescu, 1995).
1.4.2 Mechanisms controlling the Ca^{2+} sensitization of the contractile apparatus

Ca^{2+} sensitivity can be regulated by either MLC_{20} phosphorylation-dependent or -independent mechanisms. The phosphorylation-dependent mechanism involves mediators controlling MLCP activity, such as Rho-kinase (Rho-activated kinase/ROKα/ROCKII), PKC, arachidonic acid and telokin, in addition to the CaMKII that regulates MLCK activity (Somlyo & Somlyo, 2000; Hirano, 2007). The phosphorylation-independent mechanism depends on cross-bridge regulation by thin filament-associated proteins, such as caldesmon and calponin (Morgan & Gangopadhyay, 2001).

MLCP is composed of three subunits: a catalytic subunit of type 1 phosphatase ($\text{PP1C}\delta$; ~37 kDa); and two noncatalytic subunits, a large 110-130 kDa regulatory subunit termed myosin phosphatase target subunit (MYPT1) or myosin-binding subunit and a 20-kDa subunit of unknown function (Hartshorne, 1998; Ito et al., 2004). RhoA, a small monomeric G-protein, activates Rho-kinase that phosphorylates the MYPT1 and inhibits its catalytic activity, increasing MLC_{20} phosphorylation and, hence, contraction (Feng et al., 1999). In addition, Rho-kinase may phosphorylate and activate CPI-17, leading to the inhibition of $\text{PP1C}\delta$, and thereby inhibiting MLCP (Koyama et al., 2000).

PKC is another important regulator of MLCP. PKC is a family of closely related serine/threonine kinases. The PKC family can be divided into four major groups (classical, novel, atypical and group D) depending on the requirement for Ca^{2+}, DAG, and/or phosphatidylserine for activation in addition to sensitivity to phorbol esters (Walsh et al., 1996). DAG and arachidonic acid can activate PKC leading to phosphorylation of CPI-17 with subsequent inhibition of MLCP (Li et al., 1998). Arachidonic acid, released through the activation of PLA$_2$ and/or PLD (Parmentier et al., 2001), was shown to directly activate Rho-kinase independent of RhoA (Feng et al., 1999) and PKC (Kitazawa et al., 2000).

The 17 kDa protein telokin represents another regulator of MLCP. It mediates Ca^{2+} desensitization through activation of MLCP in VSMCs, which lead to a
decreased MLC\textsubscript{20} phosphorylation with subsequent relaxation (Wu et al., 1998b; Choudhury et al., 2004).

In addition to MLCP, MLCK can play a role in Ca2+ desensitization. The activity of MLCK is primarily regulated by the Ca2+-CaM complex. However, the phosphorylation of MLCK, by CaMKII, in the region of its CaM-binding domain decreases its affinity for the Ca2+-CaM complex and, hence, its phosphorylating activity (Stull et al., 1993).

The thin-filament-associated proteins caldesmon and calponin possess actin- and CaM-binding activities, and the capability to inhibit the actomyosin ATPase activity and, hence, crossbridge cycling (Winder et al., 1998). When phosphorylated, their inhibitory action on actomyosin ATPase can be reversed, possibly leading to enhanced crossbridge cycling and thus to an enhanced contractile response without an increase in MLC\textsubscript{20} phosphorylation (Winder et al., 1998). Thus, these thin-filament-associated proteins may participate in the regulation of myofilament Ca2+ sensitivity through their phosphorylation by MAPKs and/or other kinases such as PKC, CaMKII, or p21-activated kinase (Morgan & Gangopadhyay, 2001).

1.4.3 Other mechanisms regulating VSM contraction

1.4.3.1 Cyclic nucleotides

An increase in the cytosolic level of cGMP (by NO, carbon monoxide (CO), or natriuretic peptides) or cAMP (by β-adrenergic agonists, PGI\textsubscript{2} or adenosine) in VSMCs is considered one of the major mechanisms that mediate vasodilation through reduction of both [Ca2+]\textsubscript{i} and Ca2+ sensitivity in VSMCs (Vaandrager & de Jonge, 1996; Polson & Strada, 1996; Levin et al., 1998). The increase in cGMP levels leads to the activation of PKG, which in turn reduces [Ca2+]\textsubscript{i} through activation of SERCA, PMCA and NCX, inhibition of IP\textsubscript{3}R/ IP\textsubscript{3} synthesis, activation of K+ channels and inhibition of VOCCs (Vaandrager & de Jonge, 1996). The PKG-induced reduction of myofilament Ca2+ sensitivity is possibly due to the upregulation of MLCP (Vaandrager & de Jonge, 1996; Somlyo & Somlyo, 2000). Similarly, the increase in cAMP levels exerts profound influences on cellular Ca2+ mobilization.
Chapter 1-Introduction

through the activation of PKA, including inhibition of the activation of PLC and Ca2+ channels, stimulation of PMCA, SERCA and the NCX and activation of K+ channels (Minami et al., 1993; Takuwa, 1996). In addition, the increase in cAMP reduces myofilament Ca2+ sensitivity, presumably by phosphorylating MLCK and thereby decreasing its affinity for the Ca2+-CaM complex (Takuwa, 1996).

1.4.3.2 Potassium channels

In VSMCs potassium (K+) channels play a fundamental role in maintaining the membrane potential, a major determinant of vascular tone, particularly in systemic resistance vessels. Specifically, the blockade of K+ channels results in membrane depolarization and increased Ca2+ influx through VOCCs, leading to vasoconstriction. Conversely, the activation of K+ channels results in plasmalemmal K+ efflux, membrane hyperpolarization, and reduced Ca2+ influx through VOCCs, leading to vasodilation (Nelson & Quayle, 1995; Takuwa, 1996). Therefore, K+ channels may serve to limit membrane depolarization in response to vasoconstrictor stimuli (as ET-1, AngII, vasopressin or TxA\textsubscript{2}) and their activation may be involved in response to vasodilator stimuli (as NO, EDHF, PGI\textsubscript{2} or adenosine) (Waldron & Cole, 1999).

Several K+ channels exist in VSMCs, such as voltage-gated K+ (K\textsubscript{V}), Ca2+-activated K+ (K\textsubscript{Ca}), ATP-sensitive K+ (K\textsubscript{ATP}) and inward rectifying K+ (K\textsubscript{ir}) channels. Depolarization activates K\textsubscript{V} and K\textsubscript{Ca}. \([Ca^{2+}]_i\) activates K\textsubscript{Ca}. Hyperpolarization activates K\textsubscript{ir} while ATP inhibits K\textsubscript{ATP} channels (Brayden, 1996; Clapp & Tinker, 1998). Membrane hyperpolarization by K+ channel opening, mainly the large-conductance K\textsubscript{Ca} (BK) and K\textsubscript{ATP} channels, has been shown to account for the observed vascular hyporeactivity of septic shock (Chen et al., 2000; Farias et al., 2002; Wu et al., 2004; O'Brien et al., 2005; Pickkers et al., 2006). BK is the most abundant K+ channel in VSMCs (Ledoux et al., 2006) that can be upregulated in hypertension (Rusch et al., 1996).
1.4.3.3 Chloride channels

Chloride (Cl\(^-\)) channels also play an important role in the regulation of \([\text{Ca}^{2+}]_i\) in VSMCs as they are abundantly distributed in the VSM membrane. Two types of Cl\(^-\) channels exist in VSMCs including volume-regulated Cl\(^-\) (Cl\(_v\)) and Ca\(^{2+}\)-dependent Cl\(^-\) (Cl\(_{Ca}\)) channels (Large & Wang, 1996; Yamazaki et al., 1998). Vascular distension caused by a rise in blood pressure would activate Cl\(_v\) channels leading to membrane depolarization and subsequent opening of VOCCs resulting in vasoconstriction. Thus, the Cl\(_v\) channel may play a protective role in maintaining tissue integrity against mechanical stretch (Yamazaki et al., 1998; Kitamura & Yamazaki, 2001). The Cl\(_{Ca}\) channels have been reported to be activated by an increase in \([\text{Ca}^{2+}]_i\) and contribute to the contractile response to norepinephrine in some vascular beds (Large & Wang, 1996; Kitamura & Yamazaki, 2001).
1.5 Aim of the work

Inflammation has incompletely characterised effects on cardiopulmonary vascular reactivity. Both hypo- and hyper-responsiveness to vasoactive agents have been reported, depending on the experimental system used. The changes reported in vascular reactivity are likely to be a consequence of altered expression of vasoactive substances and alterations in signalling transduction events in vascular tissue. The aim of this project is to characterise the relationships between changed vascular reactivity induced by LPS, as a powerful inflammatory stimulus, and the expression and activity of vasoactive mediators and associated signalling events.

A better understanding of the relationship between inflammation and vascular smooth muscle function will provide the basis for novel therapeutic strategies in the treatment of cardiopulmonary pathologies associated with inflammatory disease.

Objectives:

1- to establish and optimize an *in vitro* model that can be easily controlled to determine the effects and mechanisms of LPS on vascular reactivity.

2- to examine the effect of LPS on vascular reactivity to different vasoconstrictors and vasodilators in the developed *in vitro* model, using different arteries representing the systemic and pulmonary circulations.

3- to determine the vasoactive mediators that could be involved in vascular reactivity changes induced by LPS.

4- to investigate the possible alterations in signalling transduction events involved in VSM contraction that could be induced by LPS, including the role of specific receptor expression, $[\text{Ca}^{2+}]$, and Ca^{2+} sensitization.

These objectives will be used to test the hypothesis that LPS induces changes in VSM reactivity through affecting signalling events, such as specific receptor expression, Ca^{2+} influx, $[\text{Ca}^{2+}]$, and/or Ca^{2+} sensitization, and these changes depend on the type of vascular tissue and the vasoactive mediator being tested.
Chapter 2

Methods & Materials
Chapter 2 - Methods & Materials

Chapter 2

2.1 Tissue preparation

Male Wistar rats of 8-9 weeks age (250-300 g) from the University of Bath Animal House (Bath, UK) were used. Animal housing and care was carried out in accordance with UK Home Office legislation and guidelines [Animals (Scientific procedures) Act 1986]. Standard animal facilities were used, including constant temperature (20±2°C), relative humidity (55±10%) and alternating 12 h light and dark cycles in addition to providing food and water ad libitum.

Rats were humanely killed by cervical dislocation and the side branches of the pulmonary artery and the descending thoracic aorta were separated and placed in ice-cold HEPES-buffered physiological salt solution (PSS) (see Table 2.1 for composition). The vessels were dissected free of fat and connective tissue, and cut into rings (2-4 mm in length).

2.2 Organ tissue culture

Under sterile tissue culture conditions in a class 2 microflow safety biological cabinet (Astec Environmental Systems, North Somerset, UK), vascular rings were gently washed in Dulbecco’s modified Eagle’s medium (DMEM) before being placed into 48-well tissue culture plates, with each well containing 1 ring in 1 ml DMEM supplemented with penicillin (100 unit.ml\(^{-1}\)), streptomycin (100 µg ml\(^{-1}\)) and 10% certified and heat-inactivated foetal bovine serum (FBS). After 1 h stabilization, vascular rings were transferred to a fresh medium of the same composition (control group) or supplemented with LPS (10 µg ml\(^{-1}\); LPS-treated group) and incubated for 20 h at 37°C in humidified atmosphere of 5% CO\(_2\) in air using a Leec CO\(_2\) incubator (Leec Limited, Nottingham, UK). Different vasoactive reagents and inhibitors used in this study are listed in Table 2.2.
Table 2.1 Composition of physiological salt solutions (PSS)

<table>
<thead>
<tr>
<th></th>
<th>Krebs-Henseleit</th>
<th>HEPES-buffered</th>
<th>Ca(^{2+})-free (HEPES-buffered)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>118</td>
<td>118</td>
<td>118</td>
</tr>
<tr>
<td>KCl</td>
<td>4.7</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>Glucose</td>
<td>11.1</td>
<td>11.1</td>
<td>11.1</td>
</tr>
<tr>
<td>KH(_2)PO(_4)</td>
<td>1.2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>NaHCO(_3)</td>
<td>25</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>MgSO(_4)</td>
<td>1.2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>MgCl(_2)</td>
<td>—</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>HEPES</td>
<td>—</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>CaCl(_2)</td>
<td>2.5</td>
<td>1.5</td>
<td>—</td>
</tr>
</tbody>
</table>

All values are expressed in mM. The pH of HEPES-buffered PSS was adjusted to 7.4 with NaOH, while that of Krebs-Henseleit solution was adjusted to the same value with continuous bubbling with carbogen mixture (5% CO\(_2\) + 95% O\(_2\)). For [Ca\(^{2+}\)]\(_i\) measurements, HEPES-buffered PSS was used, but with CaCl\(_2\) 2.5 mM instead of 1.5 mM.

2.3 In vitro vascular reactivity studies

Following 20 h of incubation, arterial rings from the control and the LPS-treated groups were suspended in an organ bath between 2 stainless steel parallel hooks, one of which was fixed and the other attached to an isometric tension transducer. The organ bath was filled with 18 ml of Krebs-Henseleit solution at a temperature of 37\(^{\circ}\)C and continuously bubbled with a mixture of 95% O\(_2\) and 5% CO\(_2\). Rings were allowed to equilibrate under 12 (aorta) and 7 (pulmonary artery) mN resting tension for 60 minutes, during which time the bath solution was replaced every 15 minutes and the resting tension was readjusted when necessary. Isometric tension generated by the VSM was measured using a force displacement transducer (K30, Hugo-sachs Elektronik, March, Germany) and recorded with a MacLab 4S unit linked to a PC running Chart v4.2 software (ADInstruments Ltd., Chalgrove, Oxfordshire, UK). The software was adjusted to record 20 samples per second at 2mV sensitivity and a 20 Hz filter was applied to remove electronic noise.
Chapter 2 - Methods & Materials

At the beginning of each experiment, arterial ring responsiveness was assessed by measuring contraction to 80 mM KCl and this procedure was repeated until consistent responses were obtained, and then rings were washed until tension returned to the base line.

To measure vasoconstriction, cumulative concentration-response curves were constructed to ET-1 (0.3-100 nM), phenylephrine (1 nM-10 µM) and U46619 (3 nM-1 µM). Contraction to ET-1 was also measured in absence of external Ca\(^{2+}\) (Ca\(^{2+}\) was omitted from PSS and 1 mM EGTA was added) or in presence of different inhibitors (Table 2.2).

To measure vasorelaxation, rings were first preconstricted with 30 nM ET-1 and after reaching a steady state contraction (plateau), relaxation responses to ACh (1 nM- 30 µM), SNP (1 nM-30 µM), 8-pCPT-cGMP (0.1 µM-100 µM), BAY 41-2272 (1 nM-10 µM), T-0156 (0.1 nM-100 nM), Ro-31-8425 (300 nM), nifedipine (10 nM-30 µM), SKF-96365 (10 µM), and Y-27632 (0.1 µM-30 µM) were measured (Table 2.2).

In some preparations, endothelium was removed by gentle mechanical rubbing, and denudation was confirmed by absence of relaxation to 1 µM ACh. Appropriate vehicle control experiments were also conducted.
Table 2.2 Different vasoactive mediators and inhibitors used in this study

<table>
<thead>
<tr>
<th>Compound</th>
<th>Function</th>
<th>Solubility</th>
<th>Final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-1</td>
<td>ET receptor agonist, VC</td>
<td>H₂O</td>
<td>0.3–100 nM</td>
</tr>
<tr>
<td>Phenylephrine</td>
<td>α₁-adrenoceptor agonist, VC</td>
<td>H₂O</td>
<td>10 nM-30 µM</td>
</tr>
<tr>
<td>U46619</td>
<td>TxA₂ mimetic, VC</td>
<td>DMSO</td>
<td>3 nM-1 µM</td>
</tr>
<tr>
<td>KCl</td>
<td>Depolarizing agent, receptor-independent VC</td>
<td>H₂O</td>
<td>80 mM</td>
</tr>
<tr>
<td>ACh</td>
<td>eNOS stimulant, VD</td>
<td>H₂O</td>
<td>1 nM-30 µM</td>
</tr>
<tr>
<td>SNP</td>
<td>NO releasing agent</td>
<td>H₂O</td>
<td>1 nM-30 µM</td>
</tr>
<tr>
<td>1400W</td>
<td>Specific iNOS inhibitor</td>
<td>DMSO</td>
<td>1 µM</td>
</tr>
<tr>
<td>8-pCPT-cGMP</td>
<td>PDE-resistant cGMP analogue</td>
<td>H₂O</td>
<td>0.1 µM-100 µM</td>
</tr>
<tr>
<td>BAY 41-2272</td>
<td>Direct sGC activator, VD</td>
<td>DMSO</td>
<td>1 nM-10 µM</td>
</tr>
<tr>
<td>ODQ</td>
<td>sGC inhibitor</td>
<td>DMSO</td>
<td>10 µM</td>
</tr>
<tr>
<td>T-0156</td>
<td>PDE5 inhibitor</td>
<td>DMSO</td>
<td>0.1 nM-100 nM</td>
</tr>
<tr>
<td>Y-27632</td>
<td>ROCK inhibitor</td>
<td>H₂O</td>
<td>0.1 µM-30 µM</td>
</tr>
<tr>
<td>Ro-31-8425</td>
<td>PKC inhibitor</td>
<td>DMSO</td>
<td>300 nM</td>
</tr>
<tr>
<td>Indomethacin</td>
<td>COX inhibitor</td>
<td>Na₂CO₃ (5 mM)</td>
<td>10 µM</td>
</tr>
<tr>
<td>Trolox</td>
<td>Antioxidant, ROS inhibitor</td>
<td>Ethanol</td>
<td>200 µM</td>
</tr>
<tr>
<td>Cycloheximide</td>
<td>Protein synthesis inhibitor</td>
<td>Ethanol</td>
<td>10 µM</td>
</tr>
<tr>
<td>Glybenclamide</td>
<td>K⁺/ATP channel blocker</td>
<td>DMSO</td>
<td>10 µM</td>
</tr>
<tr>
<td>Iberiotoxin</td>
<td>BK channel blocker</td>
<td>H₂O</td>
<td>100 nM</td>
</tr>
<tr>
<td>EGTA</td>
<td>Ca²⁺-chelating agent</td>
<td>H₂O</td>
<td>1 mM</td>
</tr>
<tr>
<td>Nifedipine</td>
<td>L-type VOCC blocker</td>
<td>DMSO</td>
<td>10 nM-30 µM</td>
</tr>
<tr>
<td>SKF-96365</td>
<td>ROCCs & SOCCs blocker</td>
<td>H₂O</td>
<td>10 µM</td>
</tr>
</tbody>
</table>

VC, vasoconstrictor; VD, vasodilator. Stock solutions were normally prepared as 1000x of the maximum concentration required.
2.4 Measurement of NO release

In aqueous solutions, NO has a very short half-life and is oxidized to nitrite and nitrate, therefore, NO production was determined by measuring the accumulation of these breakdown products in the culture medium (Bishop-Bailey et al., 1997). Nitrate was first reduced to nitrite and the total nitrite was measured spectrophotometrically by the Greiss reaction.

Pulmonary and aortic rings were divided into four groups: control, LPS, LPS+L-NAME (100 µM) or LPS+1400W (1 µM). Each ring was incubated in 1 ml medium as described above, but phenol red-free DMEM was used. After 20 h incubation, 60 µl supernatant was taken from each well and samples were incubated for 60 min at 37°C with 0.2 unit ml\(^{-1}\) nitrite reductase, 50 µM NADPH and 5 µM FAD to reduce nitrate to nitrite. Remaining NADPH, which absorbs at 550 nm, was oxidized by the addition of 10 unit ml\(^{-1}\) lactate dehydrogenase and 10 mM sodium pyruvate for a further 10 min at 37°C. A final sample volume of 100 µl was then mixed with an equal volume of modified Greiss reagent for 5 min in 96-well plates. Absorbance was measured at 550 nm by Versamax tunable microplate reader with Softmax Pro software (Molecular Devices, USA) and total nitrite concentration was calculated using the standard curves of sodium nitrate (0-128 nmole ml\(^{-1}\)) in culture medium run simultaneously in parallel.

2.5 Assay of SNP-induced cGMP production

To assess changes in cGMP production, a NO donor (100 µM SNP) was used to stimulate production of cGMP in the presence of a non-selective PDE inhibitor (100 µM IBMX) to prevent cGMP degradation (Toward et al., 2005; Fernandes et al., 2006). This assay is based on the competitive binding technique in which cGMP present in a sample competes with a fixed amount of horseradish peroxidase (HRP)-labeled cGMP for sites on a rabbit polyclonal antibody. During the incubation, the polyclonal antibody becomes bound to the goat anti-rabbit antibody coated onto the microplate. Following a wash, to remove excess conjugate and unbound sample, a substrate solution is added to the wells to determine the bound enzyme activity. The colour development is stopped and the absorbance is read at
450 nm. The intensity of the colour is inversely proportional to the concentration of cGMP in the sample.

Rings from control and LPS groups were transferred to a HEPES-buffered PSS and incubated for 1 h at 37°C. Rings were then incubated with the non-selective PDE inhibitor 100 µM IBMX for 30 min followed by incubation with 100 µM SNP for an additional 10 min further incubation. Rings were then quickly frozen and homogenized in ice-cold 6% trichloroacetic acid to give a 10% (w/v) homogenate. Homogenates were centrifuged at 2000 g for 15 min at 4°C, the supernatant was recovered and the pellet discarded. The supernatant was washed 4 times with 5 volumes of water saturated diethyl ether and the upper ether layer was discarded after each wash. The remaining aqueous extract was heated at 60°C for 10 min to remove any traces of ether, then lyophilised using Edwards modulyo freeze dryer (Edwards high vacuum international, Sussex, UK) attached to a vacuum pump (RV8, Edwards, UK) with samples placed in 1.5 microfuge tubes with open caps in a Savant SVC-100H Speed Vac Concentrator (Savant, Farmingdale, NY, USA). The dried extract was dissolved in a suitable volume of assay buffer and cGMP was measured in duplicate by ELISA using a commercially available enzyme immunoassay (R&D Systems Europe Ltd., Abingdon, UK) according to the manufacturer’s instructions. Results were expressed as picomoles of cGMP per milligram of tissue weight.

2.6 Measurement of changes in $[\text{Ca}^{2+}]_i$ in isolated aortic VSMCs

2.6.1 Isolation of VSMCs

Aortic rings (4-6 mm in length) were separated and incubated as before (control and LPS 10 µg ml$^{-1}$) for 20 h. After incubation, the endothelium was removed mechanically by gentle rubbing and aortic rings were washed with Ca$^{2+}$-free HEPES-buffered PSS (Table 2.1) for 15 min at 37°C with continuous shaking. Vascular rings were digested by transferring into 2 ml enzymatic solution composed of Ca$^{2+}$-free HEPES-buffered PSS plus the components shown in Table 2.3 and incubated at 37°C for 45 min with continuous shaking. The digested rings were carefully washed 3 times in fresh Ca$^{2+}$-free PSS (each 5 min), then tissues were placed in fresh Ca$^{2+}$-free HEPES-buffered PSS and gently trituredated by a fire-polished Pasteur pipette to
release VSMCs. Undispersed pieces of tissue were removed by syringe filtration through a nylon mesh (95 µm) very slowly. The Ca$^{2+}$ concentration was increased gradually in the final cell suspension to 0.5 mM. The viability of the cells were tested with trypan blue exclusion, with >85% of the cells viable considered as acceptable. Suspended VSMCs were then incubated at room temperature for 1 h over glass coverslips, coated with poly-L-lysine overnight, in a 6-well plate.

Table 2.3 Enzymatic solution to separate aortic VSMCs

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration (mg ml$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Papain</td>
<td>1</td>
</tr>
<tr>
<td>Collagenase-P</td>
<td>2</td>
</tr>
<tr>
<td>Soyabean trypsin inhibitor</td>
<td>0.5</td>
</tr>
<tr>
<td>Dithiothrietol</td>
<td>1</td>
</tr>
<tr>
<td>Bovine serum albumin (BSA)</td>
<td>1</td>
</tr>
</tbody>
</table>

2.6.2 Measurement of [Ca$^{2+}$]$_i$

VSMCs were loaded for 1 h at room temperature with 5 µM membrane-permeant Fura-2 AM in HEPES-buffered PSS but with Ca$^{2+}$ 2.5 mM (Table 2.1) containing 0.02% Pluronic F-127 at room temperature in the dark. The ratiometric nature of the Fura-2 dye allows for assessment of [Ca$^{2+}$]$_i$ that are independent of diameter changes. The coverslips with attached fura-2 loaded cells were placed in a 0.25-ml chamber on the stage of a Zeiss Axiovert S 100 inverted microscope with a 40x/1.30 Fluar oil immersion objective. The cells were excited alternately at 340- and 380-nm wavelengths of ultraviolet light at a frequency of 0.75 Hz by using a Spectrastar I variable excitation wavelength generator (EG&G Wallac LSR, Cambridge, UK). Emitting fluorescence was collected through a 510-580nm band pass emission filter and cell images were acquired using an Ultrapix (PDCI) CCD camera (1024x1024 max pixels) and analysed using Ultraview software version 4 (Perkin-Elmer, USA). The background fluorescence signal was subtracted by measuring emitted fluorescence from an area on the coverslip with no cells.
The cells were perfused with either HEPES-buffered PSS (2.5 mM CaCl$_2$) or Ca$^{2+}$-free HEPES-buffered PSS (with 1 mM EGTA added) at 2 ml min$^{-1}$ at 37°C for 10 min. [Ca$^{2+}$], baseline was recorded for 30 s before the perfusion of ET-1 (100 nM). At the end of the experiment, 2 µM ionomycin with 10 mM Ca$^{2+}$ followed by 2 mM EGTA were added to obtain the fluorescence intensity maximum (F_{max}) and the fluorescence intensity minimum (F_{min}) respectively.

The [Ca$^{2+}$], was determined from the Grynkiewicz equilibrium equation (Grynkiewicz et al., 1985):

$$[\text{Ca}^{2+}] = K_D \times \beta \times (R - R_{\text{min}}) / (R_{\text{max}} - R)$$

R, the experimental value of fluorescence ratio,

K_D, the dissociation constant for fura-2 (224 nM at 37°C),

β is the ratio of fluorescence of fura-2 when excited at 380 nM in the zero and saturating Ca$^{2+}$.

The [Ca$^{2+}$], during sustained phase was expressed as % of the transient peak [Ca$^{2+}$].

2.7 Immunoblotting

Immunoblotting or Western blotting is a technique that allows visualisation of the relative amounts of specific proteins in a given sample. Samples are lysed using different buffers containing detergents, solubilising agents and different protease inhibitors. To fully dissociate proteins into their polypeptide subunits, samples are heated with sodium dodecyl sulphate (SDS) and thiol reagent. The negative charge associated with protein by the bound detergent enables proteins to migrate through a polyacrylamide gel strictly according to polypeptide size. Following electrophoresis, separated proteins are transferred into a membrane, and then probed with primary antibodies raised against specific proteins. Secondary antibodies, tagged with an enzyme such as HRP, are then added to bind specifically to the primary antibodies. The enzyme bound to the secondary antibodies catalyses a chemiluminescence reaction that enables the antibodies to be detected using photosensitive film.
2.7.1 Tissue lysis

After 20 h of incubation with either control or LPS, pulmonary and aortic rings were rapidly frozen in liquid nitrogen, either directly or after reaching maximal contraction to ET-1, and collected at the plateau of maximal contraction in organ bath and then stored at -80 °C until used. Vascular tissue was mechanically homogenized using PowerGen 125 homogenizer (Fisher Scientific, UK) in 10 volumes per weight (between 200-400 μl) of an ice-cold lysis buffer (see Table 2.4 for composition). Homogenates were rotated at 4 °C for 30 min to allow inhibition of proteases and then centrifuged (18000 g for 15 min at 4 °C) and supernatant was used as described below.

Table 2.4 Immunoblotting buffers

<table>
<thead>
<tr>
<th>Buffer</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lysis buffer I</td>
<td>150 mM NaCl, 1 mM EDTA, 50 mM Tris HCl pH 7.5, 1%</td>
</tr>
<tr>
<td></td>
<td>Nonidet-P40, 10% glycerol, 1 mM sodium orthovanadate, 10 mM sodium fluoride, 1 mM PMSF and 1% protease inhibitor cocktail</td>
</tr>
<tr>
<td>Lysis buffer II</td>
<td>1x RIPA buffer, 10 mM sodium fluoride, 1 mM sodium molybdate, 1 mM PMSF and 1% protease inhibitor cocktail</td>
</tr>
<tr>
<td>Sample buffer</td>
<td>10% SDS, 200 mM Tris HCl pH 6.8, 50% glycerol, 0.01% bromophenol blue and 5% 2-mercaptoethanol (added just prior use)</td>
</tr>
<tr>
<td>Running buffer</td>
<td>192 mM glycine, 25 mM Trizma base, 0.1% (w/v) SDS, ultrapure water</td>
</tr>
<tr>
<td>Semi-dry transfer buffer</td>
<td>39 mM glycine, 48 mM Trizma base, 0.0375% SDS, 20% (v/v) methanol, ultrapure water</td>
</tr>
<tr>
<td>Tris-buffered saline (TBS)</td>
<td>20 mM Tris-HCl pH 7.5 and 150 mM NaCl</td>
</tr>
<tr>
<td>TBSN</td>
<td>TBS + 0.05% Nonidet-P40</td>
</tr>
</tbody>
</table>

2.7.2 Determination of protein concentrations in lysates

In order to provide similar amounts of proteins in the same volume of each sample, supernatant protein concentration was quantified by the BioRad protein assay (Bio-Rad, Hercules, USA) which is based on the Bradford protein
quantification assay (Bradford, 1976; Zor & Selinger, 1996). A 1 mg ml\(^{-1}\) solution of BSA was used to construct the standard curve at concentrations of 0-32 \(\mu\)g \(\mu\)l\(^{-1}\). Equal volumes (2 \(\mu\)l) of each lysate sample or the standard were added to 250 \(\mu\)l of Quickstart Bradford dye reagent 1x (BioRad) in triplicate in a 96-well microtitre plate. Protein concentration was measured at 595 nm using Versamax tunable microplate reader with Softmax Pro software (Molecular Devices, USA). The protein concentrations of the lysate samples were then calculated from the standard curve by linear regression with additional compensation for any dilutions.

2.7.3 Immunoblotting sample preparation

After determining protein concentrations, lysate samples containing higher concentrations of proteins were diluted with ice-cold lysis buffer to equalize the protein concentrations between all samples. Samples (100-200 \(\mu\)l each) were mixed with 5x SDS sample buffer (see Table 2.4 for composition) in 4 to 1 volumes respectively, heated at 100 °C for 5 min using Techne dri-block DB-2A (Techne Cambridge Limited, Cambridge, UK), placed on ice for 5 min and then stored at -20 °C until used.

2.7.4 Polyacrylamide gel electrophoresis

One-dimensional polyacrylamide gels were prepared using BioRad Mini Protean II gel electrophoresis with attached PowerPac 300 unit (Bio-Rad Labs, Hemel Hempstead, UK) and assembled according to the manufactures guidelines, utilising pre-cleaned glass plates. The resolving gel was prepared at the desired percentage of acrylamide depending on the relative size of the proteins under investigation (Table 2.5), where 7.5% gel was used for all proteins studied except those less than 30 kDa (MLC\(_{20}\) and CPI-17) in which 15% gel was used. The resolving gel was poured between the glass plates and overlaid with water to achieve a uniform line and left to polymerise for 40 min. The water was then aspirated and the stacking gel poured on top, with a 10-well comb inserted between the plates to create the wells for the loading of protein samples, and left for 20 min to polymerize. The wells were thoroughly cleaned with water to remove any residual stacking gel before being filled with lx SDS-PAGE running buffer (Table 2.4). Protein samples
(40 µg per lane) were then loaded into the wells with one well loaded with 10 µl of pre-stained molecular weight markers to serve as a guide to ease protein band identification at a later stage. Pre-cast gels were then placed into a gel tank with 1x SDS-PAGE running buffer in the top and bottom reservoirs and electrophoresis was run at 80 volts until the bromophenol blue present in the lysate samples entered the resolving gel. At that time, the voltage was increased to 180 volts. Gels were run until the bromophenol blue dye reached the bottom of the resolving gel or the desired separation of bands in reference to the molecular weight markers was achieved, then gels were removed and placed into semi-dry transfer buffer.

Table 2.5 Recipes for electrophoresis gels

<table>
<thead>
<tr>
<th></th>
<th>Running gel</th>
<th>Stacking gel 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.5%</td>
<td>15%</td>
</tr>
<tr>
<td>30% acrylamide/Bis-acrylamide</td>
<td>3.75</td>
<td>7.5</td>
</tr>
<tr>
<td>MilliQ H₂O</td>
<td>5.6</td>
<td>1.85</td>
</tr>
<tr>
<td>1M Tris-HCl pH 8.8</td>
<td>5.6</td>
<td>5.6</td>
</tr>
<tr>
<td>1M Tris-HCl pH 6.8</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>10% SDS</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

All values are expressed in ml. Total volume of the running gel is sufficient for three 1 mm thick mini gels, while that of stacking gel is sufficient for four 1 mm thick mini gels. 50 µl ammonium persulfate (10% w/v) and 20 µl TEMED are added to running and stacking gel mixtures just before pouring into the gel cassettes.

2.7.5 Semi-dry transfer of proteins to nitrocellulose membrane

Following gel electrophoresis, the separated proteins were transferred onto nitrocellulose membranes by semi-dry transfer using Bio-Rad Transblot SD cell (BioRad, USA). This approach was achieved by removing the gel from the pre-assembled gel apparatus and soaked in semi-dry transfer buffer (Table 2.4). In order to ensure efficient transfer of the proteins, the bottom (positive) graphite electrode was dampened with transfer buffer. A gel-membrane sandwich composed of four pieces of 3MM Whatman paper, a piece of nitrocellulose membrane, the gel and finally another four pieces of Whatman paper, all of the same size as the gel and
all pre-soaked in the semi-dry transfer buffer, were placed on the bottom electrode
and rolled to gently expel any air bubbles then the upper negative electrode, which
was dampened with transfer buffer, was gently lowered into place. The proteins were
transferred at a rate of 0.8 mA cm\(^{-2}\) (40 mA per gel) for 1 hour.

2.7.6 Antibody probing and immunoblot developing

Once the transfer had finished, the transfer apparatus was disassembled and
the nitrocellulose membrane was washed in TBSN (See Table 2.10) prior to the
addition of water soluble Ponceau S to check for successful and even transfer of
proteins and to mark the molecular weight standards. Excess stain was removed by
washing the membrane in TBSN. The non-specific binding of antibody was blocked
by incubation of the membranes for 1 h with TBSN containing 5% non-fat milk with
gentle shaking on a Stuart rocking platform (Sterilin LTD, Staffordshire, UK) at
room temperature. The membranes were then subjected to wash in TBSN before
incubation overnight at 4 °C with one of the primary antibodies (see Table 2.6 for
conditions used for different antibodies) with gentle shaking. The next day, blots
were washed three times each for five min with TBSN before being incubated for 1 h
with HRP-conjugated secondary antibodies (1: 10000-20000 dilution in TBSN with
2% milk, Dako, Glostrup, Denmark). Immunoreactive protein bands were detected
by ECL or ECL Advance kit (Amersham Biosciences) and visualized on an X-Ray
film (Fujifilm Corporation, Tokyo, Japan). The intensity of the specific bands was
quantified by densitometric analysis using Labimage software (Kapelan Bio-imaging
Solutions, Halle, Germany).

2.7.7 Membrane stripping and reprobing

In order to probe for a different molecule in the lysate samples of a
nitrocellulose membrane that had already been used, the used membranes were
stripped free of antibody before reusing. Membranes were first washed with TBSN
for 10 min at room temperature in a rocking platform, and then they were stripped
using Re-Blot Plus solution (Chemicon, USA) according to manufacturer instruction.
After washing several times with TBSN, membranes were blocked and reprobed
with antibodies as described before. This procedure of stripping and reprobing was
specifically used for examining equal loading of phospho-proteins using antibodies specific for their non-phospho proteins. For other non-phosphorylated proteins, an antibody against abundant protein in the lysate samples, such as rabbit polyclonal anti-β-actin antibody, was used usually without stripping if there is an appropriate size difference between β-actin and the desired protein, otherwise stripping was applied.

Table 2.6 Immunoblotting conditions for primary antibodies

<table>
<thead>
<tr>
<th>Molecule targeted by antibody</th>
<th>Primary antibody species</th>
<th>MW (kDa)</th>
<th>Primary antibody conc.</th>
<th>Secondary antibody conc</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPI-17</td>
<td>rabbit</td>
<td>17</td>
<td>1 µg ml⁻¹</td>
<td>1:10000</td>
</tr>
<tr>
<td>MLC₂₀</td>
<td>rabbit</td>
<td>20</td>
<td>1:1000</td>
<td>1:10000</td>
</tr>
<tr>
<td>MYPT1</td>
<td>rabbit</td>
<td>130</td>
<td>1:200</td>
<td>1:10000</td>
</tr>
<tr>
<td>Phospho-CPI-17 (Thr38)</td>
<td>rabbit</td>
<td>17</td>
<td>2 µg ml⁻¹</td>
<td>1:10000</td>
</tr>
<tr>
<td>Phosphodiesterase 5</td>
<td>mouse</td>
<td>85/95</td>
<td>1:500</td>
<td>1:10000</td>
</tr>
<tr>
<td>Phospho-MLC₂₀ (Ser19)</td>
<td>rabbit</td>
<td>20</td>
<td>1:1000</td>
<td>1:10000</td>
</tr>
<tr>
<td>Phospho-MYPT1 (Thr850)</td>
<td>rabbit</td>
<td>130</td>
<td>1 µg ml⁻¹</td>
<td>1:10000</td>
</tr>
<tr>
<td>Phospho-ROCK α (The396)</td>
<td>rabbit</td>
<td>160</td>
<td>2 µg ml⁻¹</td>
<td>1:10000</td>
</tr>
<tr>
<td>PKC</td>
<td>rabbit</td>
<td>80</td>
<td>1:200</td>
<td>1:10000</td>
</tr>
<tr>
<td>sGCα₁</td>
<td>rabbit</td>
<td>80</td>
<td>1:10000</td>
<td>1:10000</td>
</tr>
<tr>
<td>sGCβ₁</td>
<td>rabbit</td>
<td>69</td>
<td>1:4000</td>
<td>1:10000</td>
</tr>
<tr>
<td>β-actin</td>
<td>rabbit</td>
<td>45</td>
<td>1:1000</td>
<td>1:10000</td>
</tr>
</tbody>
</table>

All antibodies used are polyclonal except anti-phosphodiesterase 5 which is monoclonal. Primary antibody concentration represents the antibody dilution in TBSN with 0.01% (w/v) sodium azide (10 ml per each membrane). Secondary antibody concentration represents the antibody dilution in TBSN with 2% (w/v) skimmed milk (10 ml per each membrane).
2.8 Quantitative RT-PCR

To measure changes induced by LPS in the gene expression of NO and ET-1 systems, RNA was extracted from aortic and pulmonary arterial rings after culturing, reverse-transcribed (RT) to cDNA and then quantified using gene specific primers for eNOS, iNOS, ET-1, ET\textsubscript{A} and ET\textsubscript{B} by real-time polymerase chain reaction (PCR).

2.8.1 RNA isolation and purification

After 20 h of incubation with either control or LPS, pulmonary and aortic rings were rapidly frozen in liquid nitrogen and then stored at -80°C until used. Vascular tissue was mechanically homogenized using PowerGen 125 homogenizer (Fisher Scientific, UK) in 2 ml RNAase free microfuge tube with rounded bottom containing 1 ml TRIZOL reagent (Invitrogen, USA). The homogenized samples were then incubated for 5 minutes at 15-30°C before adding 0.2 ml chloroform in an Airone PCR-640 UV cabinet (Safelab Systems, Bristol, UK), vortexing, incubating at 15-30°C for 2-3 min and centrifugation at 15,400g for 15 min at 4°C using Beckman GS-15R centrifuge. Following centrifugation, the upper colourless aqueous phase containing RNA was transferred to 1.5 ml RNAase free microfuge tube and the RNA was precipitated by adding 0.5 ml of isopropyl alcohol. Samples were incubated at 15-30°C for 10 minutes and then centrifuged at 15,400g for 10 min at 4°C. The precipitated gel-like RNA pellet was washed once by adding 1 ml of 75% ethanol, vortexed and then centrifuged at 15,400g for 5 min at 4°C. The RNA pellet was dried in air for 5-10 min prior to being resuspended in 50-100 µl of sterile water and heating the samples to 55°C for 10 minutes to break secondary structures within the RNA and enhancing its solubility. The produced RNA pellet was further purified using High Pure RNA Tissue Kit (Roche Applied Science, Mannheim, Germany) which contains DNase digest step to remove any genomic DNA according to manufacturer’s instructions.

RNA concentration and purity for each sample was determined using a 1:100 dilution of the RNA and the absorbance measured at 260nm and 280nm using the GeneQuant II spectrophotometer.

The concentration of RNA was determined as following:
Concentration of RNA (µg ml⁻¹) = dilution factor x 40* x A260

* The standard consideration is that 40 µg ml⁻¹ of RNA has an absorbance of 1 at 260 nm

Ratio values of 1.8-2.0 verified acceptable RNA purity. RNA samples were then stored at -80°C.

2.8.2 cDNA synthesis

RNA samples (1 µg each) were reverse-transcribed using Omniscript RT kit (Quiagen GmbH, Hilden, Germany) with anchored oligo dT primers (ABgene, Surrey, UK) in the presence of an RNase inhibitor (RNasin Plus, Promega, Madison, WI, USA) according to manufacturer’s instructions using a Perkin Elmer GeneAmp PCR System 2400 thermal cycler. The reaction mixture (Table 2.7) was setup at 40°C for 60 minutes followed by 70°C for 10 minutes to inactivate the reverse-transcriptase. RT-negative samples, in which no reverse-transcriptase was added, were also prepared to identify any possible genomic DNA contamination within RNA samples. cDNAs produced were stored at -20°C.

Table 2.7 Reverse-transcriptase (RT) reaction mixture

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10x RT buffer</td>
<td>2</td>
</tr>
<tr>
<td>dNTP (5 mM)</td>
<td>2</td>
</tr>
<tr>
<td>Anchored oligo dT primers (500 ng ml⁻¹)</td>
<td>2</td>
</tr>
<tr>
<td>RNasin plus</td>
<td>0.25</td>
</tr>
<tr>
<td>Reverse transcriptase (RT)</td>
<td>1</td>
</tr>
<tr>
<td>RNA template</td>
<td>1-12</td>
</tr>
<tr>
<td>PCR grade H₂O</td>
<td>to 20</td>
</tr>
</tbody>
</table>

2.8.3 Primers

Primers were designed using Primer3 software (Whitehead Institute for Biomedical Research, Cambridge, MA, USA) and ProbeFinder Version 2.04 software (Roche Applied Science, Mannheim, Germany), after retrieving gene
specific sequences and intron-exon information from Pubmed (Entrez Gene) and Ensembl v37 (Rattus norvegicus genome). Primers were analysed by NetPrimer software (PREMIER Biosoft International, Palo Alto, CA, USA) to detect any primer-dimer, hairpins or other secondary structures. Each primer was then blasted on Pubmed/Ensembl to ensure its specificity to the gene required. All primers were intron-spanning to avoid amplification of any genomic DNA and their product sizes are less than 150 bp which is optimal size for real-time PCR. The primers used in this study are presented in Table 2.8.

Table 2.8 Primers used in this study

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
<th>Annealing temp. (°C)</th>
<th>Amplicon size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-1</td>
<td>Forward</td>
<td>CTACTTCTGCCACCTGGACAT</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>CCTAGTCCATACGGACGAC</td>
<td></td>
</tr>
<tr>
<td>ET_A</td>
<td>Forward</td>
<td>ATCTCTGCGCTTCAGTGTG</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>GATCCCGATTCTTGAACC</td>
<td></td>
</tr>
<tr>
<td>ET_B</td>
<td>Forward</td>
<td>CTGTTGGCTTCCCTTCAC</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>TGTAGTCCAAAACCAGCAA</td>
<td></td>
</tr>
<tr>
<td>eNOS</td>
<td>Forward</td>
<td>TGACCCTCAACCATACAACA</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>CGGGTGCTTAGATCCATGC</td>
<td></td>
</tr>
<tr>
<td>iNOS</td>
<td>Forward</td>
<td>TGGTGGTGAACGACACATTT</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>GGTATGCCGAGTTCTTTCA</td>
<td></td>
</tr>
<tr>
<td>β-actin</td>
<td>Forward</td>
<td>CCCGCGAGTACAACCTTCT</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>CGTCATCCATGGCAGACT</td>
<td></td>
</tr>
</tbody>
</table>

Annealing temperature was determined by software (NetPrimer and Primer3) and tested using PCR

2.8.4 PCR

PCR is an *in vitro* method for the enzymatic synthesis of specific DNA sequences, using two oligonucleotide primers that bind to opposite strands and flank the region of interest in the target DNA. Numerous cycles involving template denaturation to open the double stranded DNA, primer annealing, and the extension
of the annealed primer by a DNA polymerase are performed using a thermal cycler. The products synthesized at the end of each cycle then serve as the template in the next round, hence the number of target DNA copies doubled at every cycle (exponential accumulation).

All PCR reactions were set-up in 25 µl reaction volumes (Table 2.9), in thin walled PCR tubes. The PCR reaction was amplified using a Perkin Elmer GeneAmp PCR System 2400 thermocycler, and the amplification cycles are illustrated in Table 2.10. At the beginning of each run, the samples were incubated at 95°C to enable activation of the thermostable recombinant Taq DNA polymerase (Hot Start DNA polymerase, Promega) by the removal of specific blocking groups. Thus, the enzyme is completely activated at a temperature where primers can not bind non-specifically. PCR products were then analysed by agarose gel electrophoresis.

Table 2.9 PCR reaction mixture

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR Master Mix (Promega)</td>
<td>12.5</td>
</tr>
<tr>
<td>Sense primer (0.5 µM final)</td>
<td>0.5</td>
</tr>
<tr>
<td>Antisense primer (0.5 µM final)</td>
<td>0.5</td>
</tr>
<tr>
<td>cDNA template</td>
<td>1-2.5</td>
</tr>
<tr>
<td>PCR grade H₂O</td>
<td>to 25</td>
</tr>
</tbody>
</table>

Table 2.10 PCR amplification cycles

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Temp. °C</th>
<th>Time (min)</th>
<th>No. of cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial denaturation (hot start)</td>
<td>94</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Amplification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denaturation</td>
<td>94</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Annealing</td>
<td>55</td>
<td>0.5</td>
<td>40</td>
</tr>
<tr>
<td>Elongation</td>
<td>72</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Final elongation</td>
<td>72</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Hold</td>
<td>4</td>
<td>∞</td>
<td>1</td>
</tr>
</tbody>
</table>
2.8.5 Agarose gel electrophoresis

Electrophoresis-grade agarose was dissolved in 1x Tris-Borate EDTA (TBE) at a concentration of 1.8%. For small 8-samples gel, 0.9 g of agarose was added to 50 ml TBE buffer in a flask covered with aluminium foil to prevent spillover, heated in microwave for 1.5-2 min at medium power, cooled to around 50°C and the volume was readjusted to 50 ml with warm ultrapure water, and then poured into horizontal gel cast apparatus with a comb inserted to form wells and allowed to set at 4°C. The comb was removed and the buffer solution was poured into the gel box up to 2-3 mm above the gel. The wells were loaded with the samples (6x TrackIt loading buffer 3.3 µl, DNA sample 2.7-6.7 µl, H₂O to 20 µl) alongside low-molecular weight DNA ladder markers. The gel was run in Kodac Biomax QS 710 gel electrophoresis chamber attached to BioRad PowerPac 300 unit at 80 V for ~ 1.5 h until bands were clearly separated, as visualised by the migration of orangeG at 50 bp and bromophenol blue at 300 bp. The gel was then placed into the staining tray with ethidium bromide (50 µl in 100 ml TBE buffer to obtain final concentration of 0.5µg/ml) for 10-20 min and then rinsed once with TBE buffer. DNA was visualised on a UV transilluminator (at 254 nm) and photographed with GeneGenius Gel Documentation System (Syngene Inc., Cambridge, UK).

2.8.6 Real-time PCR

Real-time or quantitative PCR is a system for monitoring the PCR kinetics as PCR products accumulate, based on the property that the intercalator SYBR Green I which binds to the minor groove of the double stranded DNA produced during each amplification reaction and fluoresces once bound. The fluorescence is recorded at the end of the elongation phase at 530mn using a special PCR thermocycler coupled with fluorescence acquisition system. Amplification enhances the amount of double-stranded DNA generated which SYBR Green I binds, thus resulting in an increase in fluorescence. This elevated fluorescence is monitored throughout the 40 cycles, thus by plotting the increase in fluorescence versus cycle number; the system provides a complete picture of the PCR process in comparison to assaying product accumulation. To prove that only the desired PCR product has been amplified, melt curve analysis was performed. Melt curve analysis was carried out by heating the
PCR product slowly at a rate of 0.1°C sec\(^{-1}\) from 65°C to 95°C which causes melting of double-stranded DNA and a corresponding decrease in SYBR Green I fluorescence. The real-time PCR machine continuously monitors the fluorescence signal and displays it as melting peaks. Each specific peak represents the characteristic melting temperature of a particular DNA product. The resultant PCR product can also be analysed on an agarose gel and stained with ethidium bromide then visualised under a UV transilluminator to provide further confirmation of product identity.

Real-time PCR amplification and on-line monitoring was performed using LightCycler® FastStart DNA Master SYBRgreen I in LightCycler® 1.5 thermal cycler (Roche Applied Science, Mannheim, Germany) according to manufacturer’s instructions. A master mix composed of 0.4 µM primers, 3.5 mM MgCl\(_2\), 2 µl SYBR Green Master Mix and PCR-grade water (to 18 µl) was added to pre-chilled capillaries, prior to the addition of 2 µl of 10\(^{-1}\) diluted cDNA. The capillaries were centrifuged at 3000 g for 30 seconds at 4°C before loading into the LightCycler. Each template was analyzed in duplicate within the same run. Following 40 amplification cycles, melt-curve analyses were performed to verify specific amplification. PCR efficiency of both the target and reference genes was calculated from the derived slopes of standard curves by LightCycler software (v4.0). These PCR efficiency values were used to calculate the relative quantification values for calibrator-normalized target gene expression as following:

\[
\text{Efficiency (E)} = \left[10^{-1/\text{slope}}\right] - 1
\]

| Normalized Ratio = | \(\frac{\text{Cp target unknown} / \text{Cp reference unknown}}{\text{Cp target calibrator} / \text{Cp reference calibrator}} \) |

- **Cp or Ct** = Crossing point or threshold cycle at which fluorescence starts linear part
- **Control** = Calibrator = Exogenous standard
- **Unknown** = Sample
- **Normalizer** = Endogenous standard = Reference = Housekeeping Gene
In all cases transcript levels were normalized to β-actin. The real-time PCR amplification cycles and melt curve analysis program are shown in Table 2.11.

Table 2.11 Lightcycler PCR program

<table>
<thead>
<tr>
<th>Analysis Mode</th>
<th>Cycles</th>
<th>Segment</th>
<th>Target Temperature</th>
<th>Hold Time</th>
<th>Acquisition Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pre-Incubation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>1</td>
<td></td>
<td>95°C</td>
<td>10 min</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amplification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantification</td>
<td>40</td>
<td>Denaturation</td>
<td>95°C</td>
<td>10 s</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annealing</td>
<td>primer dependent</td>
<td>5 s</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extension</td>
<td>72°C</td>
<td>(amplicon [bp]/28) s</td>
<td>single</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Melting Curve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melting Curves</td>
<td>1</td>
<td>Denaturation</td>
<td>95°C</td>
<td>0 s</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annealing</td>
<td>65°C</td>
<td>15 s</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Melting</td>
<td>95°C slope = 0.1°C/sec</td>
<td>0 s</td>
<td>continuous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cooling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>1</td>
<td></td>
<td>40°C</td>
<td>30 s</td>
<td>none</td>
</tr>
</tbody>
</table>

According to LightCycler® FastStart DNA Master SYBRgreen I manual instructions.
2.9 Data analysis

Data are expressed as mean ± standard error of mean (SEM), where (n) equals the number of animals, except in qRT-PCR (n= number of independent experiments, each using duplicate PCR reactions from the same sample prepared from pooled tissue lysates of 2 animals) and in [Ca2+]\textsubscript{i} experiments (n= number of VSM cells from at least 3 animals). The [Ca2+]\textsubscript{i} during the sustained phase is expressed as a % of the transient [Ca2+]\textsubscript{i} phase. Vascular relaxation is calculated as % of maximal steady state contraction induced by 30 nM ET-1. The highest response obtained is considered as the maximum response (E\textsubscript{max}). pEC\textsubscript{50} (= negative log the concentration producing 50% of maximal response) was determined from non-linear regression analysis (4-parameter curve fit) carried out using Graphpad Prism software (V 4.03, Graphpad Software Inc., San Diego, USA). Significant differences between groups were determined with paired Student’s t-test or one-way ANOVA with Dunnett’s, Tukey-Kramer’s or Student-Newman-Keuls Multiple Comparisons post-hoc tests as appropriate.
2.10 Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Catalogue No.</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400W</td>
<td>1415</td>
<td>Tocris Bioscience</td>
</tr>
<tr>
<td>2-Mercaptoethanol</td>
<td>M3148</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>2-Propanol</td>
<td>P/7507/17</td>
<td>Fisher Scientific</td>
</tr>
<tr>
<td>30 ml container sterile</td>
<td>128C</td>
<td>Sterilin</td>
</tr>
<tr>
<td>30% Acrylamide/Bis-acrylamide solution</td>
<td>161-0158</td>
<td>BioRad</td>
</tr>
<tr>
<td>60 ml container sterile</td>
<td>TP35-004</td>
<td>Fisher Scientific</td>
</tr>
<tr>
<td>7 ml Bijou</td>
<td>129B</td>
<td>Fisher Scientific</td>
</tr>
<tr>
<td>8-pCPT-cGMP</td>
<td>C5438</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Absolute ethanol</td>
<td>E/0650DF/17</td>
<td>Fisher Scientific</td>
</tr>
<tr>
<td>Acetylcholine chloride</td>
<td>15917-0050</td>
<td>Fisher Scientific</td>
</tr>
<tr>
<td>Agarose 1000</td>
<td>10975-035</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Albumin from bovine serum</td>
<td>A4919</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Ammonium persulphate</td>
<td>A9164</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Anchored oligo dT</td>
<td>AB-1247</td>
<td>ABgene</td>
</tr>
<tr>
<td>Anti-MLC<sub>20</sub> antibody</td>
<td>3672</td>
<td>Cell Signaling Technology</td>
</tr>
<tr>
<td>Anti-MYPT1 (H-130) antibody</td>
<td>Sc-25618</td>
<td>Santa Cruz Biotechnology</td>
</tr>
<tr>
<td>anti-phospho-CPI-17 (Thr38) antibody</td>
<td>36-006</td>
<td>Upstate</td>
</tr>
<tr>
<td>Anti-phosphodiesterase 5 antibody</td>
<td>611498</td>
<td>BD Biosciences</td>
</tr>
<tr>
<td>Anti-phospho-MLC<sub>20</sub> (Ser19) antibody</td>
<td>3671</td>
<td>Cell Signaling Technology</td>
</tr>
<tr>
<td>Anti-phospho-MYPT1 (Thr850) antibody</td>
<td>36-003</td>
<td>Upstate</td>
</tr>
<tr>
<td>Anti-phospho-ROCK α (The396) antibody</td>
<td>Ab24843</td>
<td>Abcam</td>
</tr>
<tr>
<td>Anti-PKC (H-300) antibody</td>
<td>Sc-10800</td>
<td>Santa Cruz Biotechnology</td>
</tr>
<tr>
<td>Anti-soluble guanylyl cyclase α<sub>1</sub> antibody</td>
<td>Ab50358</td>
<td>Abcam</td>
</tr>
<tr>
<td>Anti-soluble guanylyl cyclase β<sub>1</sub> antibody</td>
<td>Ab50333</td>
<td>Abcam</td>
</tr>
<tr>
<td>Anti-β-actin antibody</td>
<td>4967</td>
<td>Cell Signaling Technology</td>
</tr>
<tr>
<td>BAY 41-2272</td>
<td>196876</td>
<td>Calbiochem</td>
</tr>
<tr>
<td>Bromophenol blue</td>
<td>B8026</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Calcium Chloride 1M solution</td>
<td>190464K</td>
<td>BDH</td>
</tr>
<tr>
<td>Cell culture 24-multiwell plates</td>
<td>662160</td>
<td>Greiner bio-one</td>
</tr>
<tr>
<td>Cell culture 6-multiwell plates</td>
<td>657160</td>
<td>Greiner bio-one</td>
</tr>
<tr>
<td>Cell culture 96-multiwell plates</td>
<td>137101</td>
<td>NUNC</td>
</tr>
<tr>
<td>Cell culture dishes, 30 mm</td>
<td>153066</td>
<td>Nunc</td>
</tr>
<tr>
<td>Chloroform</td>
<td>C/4960/17</td>
<td>Fisher Scientific</td>
</tr>
<tr>
<td>Item</td>
<td>Code</td>
<td>Supplier</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Chromotography paper 3MM 46*57 cm</td>
<td>3030917</td>
<td>Whatman</td>
</tr>
<tr>
<td>Collagenase-P</td>
<td>1213857</td>
<td>Roche Applied Science</td>
</tr>
<tr>
<td>Coverslips, borosilicate glass,</td>
<td></td>
<td>BDH</td>
</tr>
<tr>
<td>Cryotube vials 1.8 ml</td>
<td>368632</td>
<td>Nunc</td>
</tr>
<tr>
<td>Custom primers (25 nmole)</td>
<td></td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Cycloheximide</td>
<td>239764</td>
<td>Calbiochem</td>
</tr>
<tr>
<td>Deltiazem</td>
<td>D2521</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Diethylether</td>
<td>D/2450/17</td>
<td>Fisher Scientific</td>
</tr>
<tr>
<td>Dimethyl sulphoxide (DMSO)</td>
<td>D8418</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Disposable serological pipets 10 ml</td>
<td>607180</td>
<td>Greiner bio-one</td>
</tr>
<tr>
<td>Disposable serological pipets 25 ml</td>
<td>760180</td>
<td>Greiner bio-one</td>
</tr>
<tr>
<td>Dithiothreitol</td>
<td>D0632</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>DMEM</td>
<td>21969-035</td>
<td>Gibco</td>
</tr>
<tr>
<td>DMEM without phenol red</td>
<td>31053</td>
<td>Gibco</td>
</tr>
<tr>
<td>ECL advance Western Blotting detection kit</td>
<td>RPN2135</td>
<td>GE Healthcare</td>
</tr>
<tr>
<td>ECL Western Blotting detection kit</td>
<td>RPN2209</td>
<td>GE Healthcare</td>
</tr>
<tr>
<td>EDTA</td>
<td>E5134</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>EGTA</td>
<td>E4378</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Endothelin-1 (ET-1)</td>
<td>88-1-10A</td>
<td>American peptide company</td>
</tr>
<tr>
<td>Ethidium Bromide solution</td>
<td>H5041</td>
<td>Promega</td>
</tr>
<tr>
<td>FAD</td>
<td>F6625</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Filter tips P2/P10 racked</td>
<td>771288</td>
<td>Greiner bio-one</td>
</tr>
<tr>
<td>Filter tips P20 racked</td>
<td>774288</td>
<td>Greiner bio-one</td>
</tr>
<tr>
<td>Filter tips P200 racked</td>
<td>772288</td>
<td>Greiner bio-one</td>
</tr>
<tr>
<td>Foetal bovine serum (FBS) certified (heat-inactivated)</td>
<td>10082-139</td>
<td>Gibco</td>
</tr>
<tr>
<td>Fuji Medical X-Ray Film</td>
<td>2731261</td>
<td>Fisher Scientific</td>
</tr>
<tr>
<td>Fura-2 AM</td>
<td>F1221</td>
<td>Molecular Probes</td>
</tr>
<tr>
<td>Glucose anhydrous</td>
<td>284508W</td>
<td>BDH</td>
</tr>
<tr>
<td>Glibenclamide</td>
<td>G0639</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Glycerol</td>
<td>G5516</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Glycine</td>
<td>50046</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Griess reagent (modified)</td>
<td>G4410</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>HEPES</td>
<td>H3375</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>High Pure RNA tissue kit</td>
<td>2033674</td>
<td>Roche Applied Science</td>
</tr>
<tr>
<td>Horseradish peroxidase-conjugated goat anti-mouse secondary antibody</td>
<td>P0447</td>
<td>Dako</td>
</tr>
<tr>
<td>Horseradish peroxidase-conjugated goat anti-rabbit secondary antibody</td>
<td>P0448</td>
<td>Dako</td>
</tr>
<tr>
<td>Material</td>
<td>Code</td>
<td>Supplier</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Horseradish peroxidase-conjugated rabbit anti-goat secondary antibody</td>
<td>P0449</td>
<td>Dako</td>
</tr>
<tr>
<td>Hydrochloric acid 37%</td>
<td>H/1150/PB17</td>
<td>Fisher Scientific</td>
</tr>
<tr>
<td>Iberiotoxin</td>
<td>L8211</td>
<td>Latoxan</td>
</tr>
<tr>
<td>IBMX</td>
<td>410957</td>
<td>Calbiochem</td>
</tr>
<tr>
<td>Indomethacin</td>
<td>I-7378</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Ionomycin calcium</td>
<td>I0634</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>K$_2$HPO$_4$, anhydrous</td>
<td>P/5240/53</td>
<td>Fisher Scientific</td>
</tr>
<tr>
<td>KH$_2$PO$_4$</td>
<td>P/4760/53</td>
<td>Fisher Scientific</td>
</tr>
<tr>
<td>Lactate dehydrogenase from rabbit muscle</td>
<td>L1254</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Lightcycler capillaries 20 ul</td>
<td>1909339</td>
<td>Roche Applied Science</td>
</tr>
<tr>
<td>LightCycler FastStart DNA Master SYBR Green I kit</td>
<td>2239264</td>
<td>Roche Applied Science</td>
</tr>
<tr>
<td>Lipopolysaccharide (LPS) from E.coli 055:B5</td>
<td>L2880</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Lipopolysaccharide (LPS) from Salmonella typhimurium</td>
<td>L6511</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>L-NAME hydrochloride</td>
<td>N-5751</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Low Molecular Weight DNA Ladder</td>
<td>N3233S</td>
<td>New England Biolabs</td>
</tr>
<tr>
<td>Magnesium chloride 1M solution</td>
<td>220933M</td>
<td>BDH</td>
</tr>
<tr>
<td>Magnesium sulphate</td>
<td>M/1000/60</td>
<td>Fisher Scientific</td>
</tr>
<tr>
<td>Methanol</td>
<td>M/4056/17</td>
<td>Fisher Scientific</td>
</tr>
<tr>
<td>Microcentrifuge tubes 0.5 ml amber</td>
<td>TUL-150-130T</td>
<td>Fisher Scientific</td>
</tr>
<tr>
<td>Microcentrifuge tubes 0.5 ml Clear</td>
<td>TUL-150-010G</td>
<td>Fisher Scientific</td>
</tr>
<tr>
<td>Microcentrifuge tubes 1.5 ml amber</td>
<td>TUL-150-270D</td>
<td>Fisher Scientific</td>
</tr>
<tr>
<td>Microcentrifuge tubes 1.5 ml Clear</td>
<td>TUL-150-150N</td>
<td>Fisher Scientific</td>
</tr>
<tr>
<td>Microcentrifuge tubes 2 ml Clear</td>
<td>FB74111</td>
<td>Fisher Scientific</td>
</tr>
<tr>
<td>NADPH</td>
<td>481973</td>
<td>Calbiochem</td>
</tr>
<tr>
<td>Natural gel saver II tips (1-200 ul)</td>
<td>FB56205</td>
<td>Fisher Scientific</td>
</tr>
<tr>
<td>Nifedipine</td>
<td>N7634</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Nitrate reductase (Aspergillus)</td>
<td>N7265</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Nitrile Gloves</td>
<td>52003M</td>
<td>Kimberly Clark</td>
</tr>
<tr>
<td>Nonidet P-40</td>
<td>56009</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Non-sterile 96-well plate</td>
<td>260836</td>
<td>NUNC</td>
</tr>
<tr>
<td>ODQ</td>
<td>0880</td>
<td>Tocris Bioscience</td>
</tr>
<tr>
<td>Omniscript RT Kit</td>
<td>205111</td>
<td>Quiagen</td>
</tr>
<tr>
<td>Papain</td>
<td>P4762</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Parameter cGMP assay Kit</td>
<td>KGE003</td>
<td>R&D Systems</td>
</tr>
<tr>
<td>Pasteur pipettes, disposable 3 ml</td>
<td>FB55354</td>
<td>Fisher Scientific</td>
</tr>
<tr>
<td>PCR Master Mix</td>
<td>M7502</td>
<td>Promega</td>
</tr>
<tr>
<td>Item</td>
<td>Catalog Number</td>
<td>Supplier</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Penicillin/streptomycin</td>
<td>15140-122</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Petri Dish, 90 mm, sterile</td>
<td>101VR20</td>
<td>Sterilin</td>
</tr>
<tr>
<td>Phenylephrine</td>
<td>P6126</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Phenylmethanesulfonylfluoride (PMSF)</td>
<td>P7626</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Phosphate buffered saline (PBS, 10X)</td>
<td>3082920A</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Pipet tips 0.1-10 µl</td>
<td>FB34521</td>
<td>Fisher Scientific</td>
</tr>
<tr>
<td>Pipette tips blue 200-1000 µl</td>
<td>740295</td>
<td>Greiner bio-one</td>
</tr>
<tr>
<td>Pipette tips Clear 1-5 ml</td>
<td>745290</td>
<td>Greiner bio-one</td>
</tr>
<tr>
<td>Pipette tips yellow 10-200 µl</td>
<td>739295</td>
<td>Greiner bio-one</td>
</tr>
<tr>
<td>Pluronic acid F-127 20% in DMSO</td>
<td>P3000MP</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Poly-L-Lysine solution 70000-150000 KDa</td>
<td>3438-100-01</td>
<td>R&D Systems</td>
</tr>
<tr>
<td>Ponceau S solution</td>
<td>P7170</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Potassium chloride</td>
<td>P/4240/53</td>
<td>Fisher Scientific</td>
</tr>
<tr>
<td>Protease inhibitor cocktail for mammalian/tissue extracts</td>
<td>P8340</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Protein Standards (Precision Plus, ALL Blue)</td>
<td>161-0373</td>
<td>BioRad</td>
</tr>
<tr>
<td>Quickstart Bradford dye reagent 1X</td>
<td>500-0205</td>
<td>BioRad</td>
</tr>
<tr>
<td>Reblot Plus Strong antibody stripping solution 10X</td>
<td>2504</td>
<td>Millipore</td>
</tr>
<tr>
<td>RIPA buffer 10X</td>
<td>9806</td>
<td>Cell Signaling Technology</td>
</tr>
<tr>
<td>RNasin Plus RNase inhibitor</td>
<td>N2611</td>
<td>Promega</td>
</tr>
<tr>
<td>Ro-31-8425</td>
<td>557514</td>
<td>Calbiochem</td>
</tr>
<tr>
<td>SKF-96365</td>
<td>1147</td>
<td>Tocris Bioscience</td>
</tr>
<tr>
<td>Skimmed Milk</td>
<td>LP0031</td>
<td>Oxoid</td>
</tr>
<tr>
<td>Sodium azide</td>
<td>S2360</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Sodium bicarbonate</td>
<td>S/4200/63</td>
<td>Fisher Scientific</td>
</tr>
<tr>
<td>Sodium carbonate</td>
<td>S/2920/53</td>
<td>Fisher Scientific</td>
</tr>
<tr>
<td>Sodium Chloride</td>
<td>S/3105/63</td>
<td>Fisher Scientific</td>
</tr>
<tr>
<td>Sodium dodecyl sulphate</td>
<td>L4390</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Sodium fluoride</td>
<td>S7920</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Sodium hydroxide</td>
<td>22146-5</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Sodium molybdate</td>
<td>S6646</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Sodium nitrate</td>
<td>71752</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Sodium nitroprusside</td>
<td>71778</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Sodium orthovanadate</td>
<td>567540</td>
<td>Calbiochem</td>
</tr>
<tr>
<td>Sodium pyruvate 100 mM sterile liquid</td>
<td>S8636</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Syringe driven filter unit (0.22 µm)</td>
<td>SLGP033RS</td>
<td>Millipore</td>
</tr>
<tr>
<td>Syringes, plastipack, different volumes</td>
<td></td>
<td>BD Biosciences</td>
</tr>
<tr>
<td>T-0156</td>
<td>1676</td>
<td>Tocris Bioscience</td>
</tr>
</tbody>
</table>
Chapter 2 - Methods & Materials

<table>
<thead>
<tr>
<th>Chemical/Reagent</th>
<th>Catalog Number</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMED</td>
<td>T9281</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Thapsigargin</td>
<td>586005</td>
<td>Calbiochem</td>
</tr>
<tr>
<td>TrackIT Cyan/Orange loading buffer</td>
<td>10482-028</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Trans-Blot nitrocellulose membrane 0.45 µm</td>
<td>162-0115</td>
<td>BioRad</td>
</tr>
<tr>
<td>Trichloroacetic acid</td>
<td>T9159</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Trizma base</td>
<td>T87602</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Tropanox blue</td>
<td>648471</td>
<td>Calbiochem</td>
</tr>
<tr>
<td>Trypsin inhibitor from soybean</td>
<td>T9003</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Tubes 15 ml polypropylene, sterile</td>
<td>188261</td>
<td>Greiner bio-one</td>
</tr>
<tr>
<td>Tubes 50 ml polypropylene, sterile</td>
<td>227270</td>
<td>Greiner bio-one</td>
</tr>
<tr>
<td>U46619</td>
<td>16450.1</td>
<td>Cayman</td>
</tr>
<tr>
<td>Ultrapure H$_2$O (MilliQ)</td>
<td></td>
<td>Millipore</td>
</tr>
<tr>
<td>Ultrapure TBE buffer 10X</td>
<td>15558-042</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Y-27632</td>
<td>1254</td>
<td>Tocris Bioscience</td>
</tr>
</tbody>
</table>

Company addresses:

Abcam (Cambridge, UK), ABgene (Surrey, UK), American peptide company (Sunnyvale, CA, USA), BD Biosciences (Oxford, UK), BDH (VWR International, Lutterworth, UK), BioRad (Hercules, CA, USA), Calbiochem (Nottingham, UK), Cayman/Axxora (Nottingham, UK), Cell Signaling Technology (Danvers, MA, USA), Dako (Glostrup, Denmark), Fisher Scientific (Loughborough, UK), GE Healthcare (Little Chalfont, UK), Gibco/Molecular Probes/Invitrogen (Carlsbad, USA), Greiner bio-one (Frickenhausen, Germany), Kimberly Clark (Zaventem, Belgium), Latoxan (Valence, France), Upstate/Millipore (Billerica, MA, USA), New England Biolabs (Ipswich, MA, USA), NUNC (Roskilde, Denmark), Oxoid (Basingstoke, UK), Promega (Madison, WI, USA), R&D Systems (Abingdon, UK), Roche Applied Science (Mannheim, Germany), Santa Cruz Biotechnology (Santa Cruz, CA, USA), Sigma-Aldrich (Poole, UK), Sterilin/Barloworld (Stone, UK), Tocris Bioscience (Avonmouth, UK), Whatman (Maidstone, UK).
Chapter 3

Result I: LPS-induced Changes in Vascular Reactivity
Chapter 3-LPS & Vascular Reactivity

Chapter 3

3.1 Introduction

LPS is a powerful stimulator of inflammatory pathways and a key molecule involved in the initiation of sepsis and associated syndromes (Heine et al., 2001; Buras et al., 2005). The administration of LPS, both in humans (Suffredini et al., 1989) and in animals (Ruetten et al., 1996; Peters & Lewis, 1996; Gardiner et al., 1996b), has been used as a model to study sepsis and septic shock, which is a complex pathophysiological state characterized by systemic vasodilation and hyporesponsiveness to different vasoconstrictor agents (Wakabayashi et al., 1987; Guc et al., 1990; Umans et al., 1993; Sirmagul et al., 2006; Matsuda & Hattori, 2007).

Different models have been developed to study LPS-induced changes in vascular reactivity. These include in vitro models (McKenna, 1990; Hall et al., 1996; O'Brien et al., 2001; Piepot et al., 2002; Miyamoto et al., 2004; Boer et al., 2005) and in vivo models (Gardiner et al., 1995; Griffiths et al., 1995; Ruetten et al., 1996; Weitzberg et al., 1996; Ruetten & Thiemermann, 1996; Curzen et al., 1997; Griffiths et al., 1997; Rees et al., 1998; Mitaka et al., 1999; Hirata & Ishimaru, 2002) as well as ex vivo models using vessels harvested from endotoxic animals (Schneider et al., 1992; Gunnett et al., 1998; Wu et al., 2004).

The results of the previous studies are highly variable. For example, LPS induces hyporeactivity to phenylephrine in rat in vivo (Guc et al., 1990), in rat superior mesenteric artery in vitro (O'Brien et al., 2001) and in rat and rabbit aortas ex vivo (Umans et al., 1993), but not in rat pulmonary arteries ex vivo (McIntyre, Jr. et al., 1997; Pulido et al., 2000) and not in rat perfused mesenteric vascular bed ex vivo (Mitchell et al., 1993). ET-1 induced vasoconstriction is increased by LPS treatment in rat mesenteric artery ex vivo (Buyukafsar et al., 2004) and guinea pig coronary and mesenteric arteries ex vivo (Jones et al., 1999), but is decreased in rat pulmonary arteries ex vivo (Curzen et al., 1995) and not affected in rat in vivo (Guc et al., 1990).
Chapter 3 - LPS & Vascular Reactivity

Even in the same model, there is variability in LPS-induced changes in vascular reactivity between different blood vessels towards different vasoconstrictors (Piepot et al., 2002; Farmer et al., 2003). This suggests that the type of blood vessel, mechanism of action of the vasoactive agent and the experimental conditions all affect the vascular reactivity observed in endotoxemic models.

The *in vivo* studies represent real pathological features, but it is difficult to controlling experimental conditions due to multiple factor interactions including neurological, blood components and metabolic factors. On the other hand, in the *in vitro* studies using cultures of dispersed VSMCs, it is easy to control the experimental conditions, although these do not represent cell to cell interaction in real tissue architecture and real pathological conditions. An organ culture system has the distinct advantages of better preservation of tissue architecture, cell-to-cell interactions, extracellular matrix and cell morphology and function (Ozaki & Karaki, 2002). In addition, organ culture has been shown to preserve tissue structure and contractility (Adner et al., 1998; Guibert et al., 2005). Thus, the organ culture study has several advantages over the classical, *in vivo* and *in vitro* methodologies.

This study focused mainly on LPS-induced changes in contractile responses to ET-1 since plasma levels of this powerful vasoconstrictor are elevated in animal models of sepsis (Curzen et al., 1997; Fujii et al., 2000) and in septic patients (Pittet et al., 1991) and its level correlates with the severity of illness (Pittet et al., 1991; Piechota et al., 2007). An organ culture method was used to study the effect of LPS on vascular reactivity of the pulmonary artery and the aorta, studied under similar experimental conditions. The main objectives were:

- establish an organ culture model to examine if LPS is capable of changing vascular reactivity and study the different factors that could affect vascular reactivity in this model, such as LPS type, concentration and incubation time.
- examine a pulmonary and a systemic blood vessel under the same experimental conditions, since they respond differently in sepsis which could help in finding contributing mechanisms involved in sepsis-induced vascular complications.
3.2 Methods

Pulmonary and aortic arterial rings were incubated with LPS (10 µg ml\(^{-1}\), 20 h) before measuring the contractile responses to ET-1 (0.3 nM-100 nM), 80 mM KCl, phenylephrine (1 nM-10 µM) or U46619 (3 nM-1 µM). In addition, the effect of organ culture on vascular contractile responses to ET-1 was measured by comparing fresh control to cultured control vascular rings. The effect of LPS type was investigated by measuring changes in responses to ET-1 and 80 mM KCl induced by either *E.coli 055:B5* or *Salmonella typhimurium* LPS. Responses to different LPS concentrations were also investigated. The effect of incubation time was investigated by measuring iNOS expression at different time points (4, 8 and 20 h) using qRT-PCR.

3.3 Effect of organ culture on vascular reactivity

In control experiments, there were no significant differences between freshly isolated and 20h-incubated pulmonary or aortic vascular rings in the contractile responses to ET-1 (Figure 3.1), indicating that tissue responsiveness was not adversely influenced by prolonged incubation.

3.4 Effect of LPS type on vascular reactivity changes

The vascular changes induced by LPS in both the pulmonary artery and the aorta were similar when incubating with either *E.coli 055:B5* or *Salmonella typhimurium* LPS. Neither type of LPS affected the contractile response of the pulmonary artery to either ET-1 (Figure 3.2a and 3.2b) or 80 mM KCl (Figure 3.2e and 3.2f). On the other hand, the contractile responses of the aortic rings to either ET-1 (Figure 3.2c and 3.2d) or 80 mM KCl (Figure 3.2e and 3.2f) were decreased by incubation with either type of LPS. These results suggest that LPS-induced changes in vascular reactivity are not dependent on the type of LPS, but on a common pathway induced by different LPS types.
Figure 3.1 Effect of organ culture on contractile responses to ET-1 in pulmonary and aortic rings. Contraction to ET-1 (0.3 nM-100 nM) was measured in pulmonary (a) and aortic (b) rings before and after incubation with control culture medium for 20 h. Data are expressed as mean ± s.e.m., where (n) equals the number of animals.
Figure 3.2 Effect of LPS type on vascular reactivity of the pulmonary artery and the aorta. Contraction to ET-1 (0.3 nM-100 nM) and 80 mM KCl in the pulmonary artery and the aorta was measured after incubation with LPS (10 µg ml$^{-1}$, 20 h) either from E.coli 055:B5 (a, c, e) or Salmonella typhimurium (b, d, f). Data are expressed as mean ± s.e.m., where (n) equals the number of animals. ** p<0.01, ***p<0.001 for E_{max} and pEC$_{50}$ values compared with control group using paired Student’s t-test.
3.5 Effect of LPS concentration on vascular reactivity changes

Increasing the concentration of LPS significantly enhanced aortic hyporeactivity to ET-1 (Figure 3.3). The decrease in E_{max} was 16±3 %, 25±4% and 31±5% for LPS concentrations of 1, 10 and 100 µg ml$^{-1}$, respectively (n=4). All three LPS concentrations caused hyporeactivity to ET-1, but the hyporeactivity induced by LPS 10 µg ml$^{-1}$ was not significantly different from that induced by LPS 100 µg ml$^{-1}$. This result suggests that an LPS concentration of 10 µg ml$^{-1}$ caused near maximal response, therefore, this concentration was chosen for subsequent experiments in this study.

3.6 Effect of incubation time on the mRNA expression iNOS

Continuous incubation with LPS resulted in enhanced gene expression of iNOS both in the pulmonary artery (Figure 3.4a) and the aorta (Figure 3.4b). This increase in iNOS gene expression was 666±103 % in the pulmonary artery and 1287±447% in the aorta when compared to their respective controls at 20 h. The presence of matching time controls ensures that the increase in iNOS was only due to LPS and not due to incubation itself. Moreover, all the time point controls and LPS-treated groups for each sample were pooled exactly from the same animals to prevent any changes due to different genetic backgrounds of different animals. These results suggest that increasing incubation time had a cumulative effect on vascular expression of iNOS, with the 20 h timepoint showing the highest increase in iNOS gene expression by LPS in the present model.
Figure 3.3 Effect of LPS concentration on aortic hyporeactivity to ET-1.

Contraction to ET-1 (0.3 nM-100 nM) was measured after incubation with LPS (1, 10 or 100 µg ml⁻¹, 20 h) in the aortic rings. Data are expressed as mean ± s.e.m., where (n) equals the number of animals. For \(E_{\text{max}} \) and \(\text{pEC}_{50} \) values: * \(p<0.05 \), ** \(p<0.01 \) compared with control group; $p<0.05$ compared with LPS 100 µg group using one-way ANOVA followed by Tukey Kramer’s post-hoc test.
Figure 3.4 Effect of LPS incubation on mRNA expression of iNOS in the pulmonary artery and aorta. RNA was extracted from control and LPS (10 µg ml⁻¹, 20 h)-treated vascular rings at 4, 8 and 20 h and reverse-transcribed into cDNA before carrying out quantitative RT-PCR to detect changes in the gene expression of iNOS in the pulmonary artery (a) and aorta (b). Data are expressed as mean ± s.e.m., where (n) equals the number of independent experiments, each using duplicate PCR reactions from the same sample prepared from pooled tissue lysates of 2 animals. * p<0.05 compared with matching time-control using paired Student’s t-test.
3.7 Effect of LPS on vascular reactivity to different vasoconstrictors

Incubation of arterial rings with LPS had a differential effect on the responses to different vasoconstrictors. In the pulmonary artery, no significant changes in contraction induced by ET-1 were found between control and LPS-treated groups (Figure 3.5a). In the aorta, however, a significant decrease in tissue contractility to ET-1 was observed in the LPS-treated group compared with the control group (p<0.01, n=9) (Figure 3.5b). This hyporeactivity to ET-1 was manifested by a 26±4 \% decrease in E_{max} from 8.41±0.40 mN to 6.26±0.32 mN and an increase in EC_{50} from 9.6±0.5 nM to 15.7±0.8 nM in the control and LPS-treated groups, respectively.

Similar aortic hyporeactivity to other vasoconstrictors was also observed. For KCl, a receptor-independent vasoconstrictor, maximal contraction induced by 80 mM KCl was significantly decreased by 20±2 \% in LPS-treated aortic rings compared to control (P<0.001, n=18), whereas pulmonary artery responses were unchanged (Figure 3.6).

The maximal contractile response to the α-adrenergic agonist phenylephrine was unchanged in the pulmonary artery (Figure 3.7a), but it was reduced by 78±2 \% in LPS-treated aortic rings compared to control (P<0.001, n= 5) (Figure 3.7b). In contrast, the contraction induced by the TxA₂ mimetic U46619 was not affected by incubation with LPS either in the pulmonary artery (Figure 3.8a) or in the aorta (Figure 3.8b), suggesting that the mechanisms of contraction induced by U46619 were not affected by LPS.
Figure 3.5 Effect of LPS on contractile responses to ET-1 in the pulmonary artery and the aorta. Contraction to ET-1 (0.3 nM-100 nM) was measured after incubation with LPS (10 µg ml⁻¹, 20 h) in the pulmonary (a) and aortic (b) arterial rings. Data are expressed as mean ± s.e.m., where (n) equals the number of animals. ** p<0.01 for Eₘₐₓ and pEC₅₀ values compared with control group using paired Student’s t-test.
Figure 3.6 Effect of LPS on contractile responses to 80 mM KCl in the pulmonary artery and the aorta. Contraction to 80 mM KCl was measured after incubation with LPS (10 µg ml\(^{-1}\), 20 h) in the pulmonary (a) and aortic (b) arterial rings. Data are expressed as mean ± s.e.m., where (n) equals the number of animals. *** p<0.001 for E\(_{\text{max}}\) values compared with control group using paired Student’s t-test.
Figure 3.7 Effect of LPS on contractile responses to phenylephrine in the pulmonary artery and the aorta. Contraction to phenylephrine (1 nM-10 µM) was measured after incubation with LPS (10 µg ml\(^{-1}\), 20 h) in the pulmonary (a) and aortic (b) arterial rings. Data are expressed as mean ± s.e.m., where (n) equals the number of animals. *** p<0.001 for \(E_{\text{max}}\) and \(pEC_{50}\) values compared with control group using paired Student’s \(t\)-test.
Figure 3.8 Effect of LPS on contractile responses to U46619 in the pulmonary artery and the aorta. Contraction to U46619 (3 nM-1 µM) was measured after incubation with LPS (10 µg ml⁻¹, 20 h) in the pulmonary (a) and aortic (b) arterial rings. Data are expressed as mean ± s.e.m., where (n) equals the number of animals.
3.8 Discussion

The results presented in this chapter show that pulmonary and aortic contractile responses to ET-1 were not affected by organ culture. LPS-induced changes in vascular contractility to ET-1 and KCl were not affected by changing the LPS type, but aortic hypocontractility to ET-1 was increased by increasing LPS concentration. Continuous incubation with LPS *in vitro* resulted in an enhanced gene expression of iNOS in both vessels, indicating a cumulative effect of LPS. Moreover, LPS selectively induces vascular hypocontractility to ET-1, KCl and phenylephrine in isolated rat aorta but not in the pulmonary artery, while the contractile responses to the TxA2 mimetic U46619 were not affected in either vessel.

The organ culture method used in this study had no effect on vascular reactivity to ET-1 when compared to fresh control, indicating that tissue responsiveness was not adversely influenced by prolonged incubation. Previous studies showed that the contractile responses to ET-1 of human omental arteries (Adner *et al.*, 1995), rat vessels including the aorta and mesenteric artery (Adner *et al.*, 1998) and rat extra- and intrapulmonary vessels (Guibert *et al.*, 2005) were not altered by organ culture. In addition, ACh-induced relaxation was not changed by 20 h organ culture of rat mesenteric artery, although there was a loss in NO and PG-mediated dilatation which is compensated for by EDHF (Alm *et al.*, 2002). In contrast, organ culture has been shown to upregulate ETB receptors on VSM of different rat blood vessels except the aorta although the contractile responses to ET-1 were not affected (Adner *et al.*, 1998). These studies support the usefulness of organ culture model to study contractile responses, especially at short time points such as 20 h as used in this study.

In addition to the effect of organ culture, LPS type, concentration and incubation time were also studied. The profile of LPS-induced changes in vascular reactivity was similar between different types of LPS, indicating that these vascular changes are independent of LPS type. With regard to LPS concentration, LPS concentration of 10 µg ml⁻¹ was optimum in the present model. This LPS concentration was previously reported to give a maximal iNOS induction (Kleschyov *et al.*, 1998; O'Brien *et al.*, 2001). Also, O'Brien *et al.* (2001) found that
hyporeactivity was unaffected by the concentration of LPS over 1 to 100 µg ml\(^{-1}\), although responses were dependent upon incubation time and were prolonged in presence of serum.

The effect of incubation time was examined by measuring vascular expression of iNOS gene, which is known to be upregulated by LPS (Lorente et al., 1993; Szabo et al., 1995; Bishop-Bailey et al., 1997; Liu et al., 1997). Increasing incubation time was found to enhance the expression of iNOS, which was extensively expressed at 20 h.

The findings of this in vitro organ culture model are similar to observations in clinical sepsis where systemic vasodilation and pulmonary hypertension occur (Manthous et al., 1993; Lorente et al., 1993) and to an ex vivo rat endotoxemic model using phenylephrine (McIntyre, Jr. et al., 1997). In addition, in vivo differences in vascular responses to LPS are characterized by systemic vasodilation and hyporesponsiveness to vasoconstrictor agents, but the pulmonary, renal and mesenteric circulations often exhibit various degrees of vasoconstriction (Curzen et al., 1997; Farmer et al., 2003). These results confirm the usefulness of organ culture models to study LPS-induced changes in vascular reactivity.

LPS in this study induced hypocontractility to ET-1, in addition to KCl and phenylephrine, in rat aorta but not in the pulmonary artery. In contrast to ET-1, KCl and phenylephrine, the contractile responses to U46619 were not altered by LPS in either the pulmonary artery or the aorta, indicating that LPS does not affect the contractile pathways induced by U46619. Similar results were obtained previously in rat aorta ex vivo (Farmer et al., 2003) and rat mesenteric artery ex vivo (Farmer et al., 2003) and in vitro (O'Brien et al., 2001). In contrast, contractile responses to U46619 were attenuated in vitro in rat coronary arteries (Piepot et al., 2002) and pulmonary artery (Boer et al., 2005). The last two studies utilized higher concentrations of LPS (50 µg ml\(^{-1}\)), that is 5 times as the concentration used in this study, which may explain the difference in results.
3.9 Summary and conclusions

By using an organ culture method, the effect of in vitro incubation with LPS as a powerful inflammatory stimulus, was examined on the pulmonary artery and the aorta under similar experimental conditions. The main findings are:

1- The pulmonary and aortic contractile responses to ET-1 were not affected by 20 h organ culture.

2- The LPS-induced changes in vascular reactivity to ET-1 and KCL were independent of LPS type.

3- Increasing LPS concentration enhanced aortic hyporeactivity to ET-1, with the concentration of 10 µg ml\(^{-1}\) being optimum in this model.

4- Continuous incubation with LPS induced cumulative iNOS expression in both vessels.

5- LPS caused a selective decrease in contractile responses to ET-1, 80 mM KCl and phenylephrine, but not to the TxA\(_2\) mimetic U46619, in the aorta while the pulmonary artery responses were not affected.

In conclusion, the present organ culture model showed that LPS selectively induced vascular hyporeactivity to different vasoconstrictors in rat aorta but not the pulmonary artery, similar to clinical symptoms in vivo in endotoxemia and sepsis. This aortic hyporeactivity was not due to organ culturing per se and was not affected by changing the LPS type. Increasing LPS concentration or the incubation time enhances this aortic hyporeactivity. Therefore, this organ culture model is suitable to study LPS-induced changes in vascular reactivity and can be easily controlled to study the molecular mechanisms involved.
Chapter 4

Result II: Mediators Involved in LPS-induced Changes in Vascular Reactivity
Chapter 4-LPS & Vasoactive Mediators

Chapter 4

4.1 Introduction

Several mediators have been suggested to play a major role in sepsis-induced vascular complications, including NO, derivatives of COX and reactive oxygen species (ROS). Excessive NO production, derived mainly from iNOS, has been shown to contribute to the development of acute lung injury, delayed hypotension and vasoplegia in patients with septic shock (Feihl et al., 2001; Lopez et al., 2004) as well as in animals injected with LPS (Szabo et al., 1995; Bishop-Bailey et al., 1997).

In septic shock, inhibition of the activity of eNOS precedes the induction of iNOS (Lu et al., 1996). Moreover, down-regulation of eNOS occurs at time points similar to those where iNOS induction is seen. iNOS has been shown to impair eNOS by limiting availability of a major NOS cofactor, tetrahydrobiopterin (Gunnett et al., 2005) and by producing peroxynitrite which causes nitration of protein tyrosine residues leading to inhibition of different enzymes involved in endothelium-dependent relaxation, such as eNOS (Pasquet et al., 1996). The impaired endothelium-dependent relaxations, either mediated by iNOS or other factors, have been shown in blood vessels from endotoxemic animals (Umans et al., 1993; Myers et al., 1995; Piepot et al., 2000; Wiel et al., 2000; Piepot et al., 2003).

Different experimental strategies have been used to control excessive NO production in sepsis, such as inhibiting NO production preferentially with selective iNOS inhibitors or by inhibiting NO-dependent pathways such as sGC, however results are conflicting. For example, the potent and highly selective iNOS inhibitor 1400W (Garvey et al., 1997) has been shown to prevent LPS-induced hypotension (Bachetti et al., 2003) and delay hypotension and circulatory failure in rats in vivo (Cuzzocrea et al., 2006), but only partially reverses LPS-induced hyporeactivity to phenylephrine in rat superior mesenteric artery in vitro (O’Brien et al., 2001) and is not effective in rabbits (Bachetti et al., 2003). ODQ, an irreversible and highly selective heme-site inhibitor of sGC (Garthwaite et al., 1995), prevents aortic hypocontractility to norepinephrine ex vivo in rat (Chen et al., 2005) and both in vitro and in vivo in rat and mouse (Zingarelli et al., 1999). Conversely, ODQ is partially effective in restoring vascular reactivity to phenylephrine in the rat superior
mesenteric artery in vitro (O’Brien et al., 2001) and ex vivo in rat aorta (Wu et al., 1998a).

Previous studies have shown that LPS decreases sGC activity in rat lung and aorta (Fernandes et al., 2006), and in cultured rat aortic (Papapetropoulos et al., 1996) and pulmonary (Scott & Nakayama, 1998) VSMCs. PDE5 activity is increased in rat lung after LPS injection (Holzmann et al., 1996) and 1 h after LPS inhalation in guinea pig lungs (Toward et al., 2005) but is decreased after 48 h in the same model. These studies have examined whole lung tissue or cultured pulmonary VSMCs, but there are no direct measurements published using isolated pulmonary arteries. Furthermore, these changes in NO signalling pathways have not been related to vascular reactivity in the same experimental model.

COX has also been suggested to play a role in LPS-induced changes in vascular reactivity, since enhanced COX-2 expression has been shown in mesenteric vessels from endotoxemic rats (Virdis et al., 2005), in rat pulmonary VSMCs (Ermert et al., 2000), in rat lung and heart in vivo (Liu et al., 1996) and in rat aorta in vitro (Bishop-Bailey et al., 1997). However, inhibition of inducible and/or constitutive COX pathways rarely reverses hypotension (Bernard et al., 1997; Leach et al., 1998; O’Brien et al., 2001).

Similarly, ROS have been shown to be induced by LPS since treatment of rats with LPS enhances vascular expression of xanthine and NADPH oxidases and increases formation of O$_2^-$ and peroxynitrite (Brandes et al., 1999). In addition, reduced plasma levels of different antioxidants and increased levels of markers of oxidative stress have been found in patients with septic shock (Goode et al., 1995; Galley et al., 1997) and in rats (Carbonell et al., 2000). Inhibition of ROS yielded controversial results. For example, LPS-induced vasoconstrictor hyporeactivity can be corrected in human by high doses of vitamin C (Pleiner et al., 2003) and in a rat endotoxic shock model in vivo by a peroxynitrite decomposition catalyst (Cuzzocrea et al., 2006). In contrast, inhibition of O$_2^-$ does not restore but further deteriorates relaxation of LPS-treated rat aortic rings (Brandes et al., 1999).
In this chapter the role of different mediators (including the endothelium-derived mediators NO/cGMP, COX and ROS) involved in LPS-induced changes in vascular reactivity to ET-1 was investigated in isolated rat pulmonary artery and aorta.

4.2 Methods

Pulmonary and aortic arterial rings were incubated with LPS (10 µg ml$^{-1}$, 20 h) in the presence or absence of endothelium, COX inhibitor indomethacin (10 µM), the antioxidant trolox (200 µM), the iNOS inhibitor 1400W (1 µM) and sGC inhibitor ODQ (10 µM) before measuring the contractile responses to ET-1 (0.3 nM-100 nM). Relaxation responses to ACh, SNP, 8-pCPT-cGMP, BAY 41-2272 and T-0156 were also measured. NO production was measured by Griess method and SNP-induced cGMP production was measured by ELISA. The expression of sGCα_1, sGCβ_1 and PDE5 proteins were measured by immunoblotting. Appropriate control experiments were done to exclude vehicle effects on vascular tissue responsiveness.

4.3 Effect of endothelium removal on LPS-induced changes in vascular reactivity to ET-1

As previously shown in chapter 3, LPS selectively causes hyporeactivity to ET-1 in the aorta but not in the pulmonary artery (Figure 3.5). The role of endothelium was studied in endothelium-denuded control and LPS-treated aortic rings. In the pulmonary artery, removal of endothelium did not cause a significant difference between control and LPS-treated vascular rings (Figure 4.1a). In the aorta, removal of endothelium did not abolish the decreased contractility to ET-1 in LPS-treated group (Figure 4.1b). This result indicates that endothelium does not play a major role in LPS-induced changes in vascular reactivity to ET-1.
Figure 4.1 Effect of removal of endothelium on LPS-induced changes in vascular reactivity to ET-1 in the pulmonary artery and the aorta. Contraction to ET-1 (0.3 nM-100 nM) was measured in endothelium-denuded pulmonary artery (a) and aorta (b) after incubation with LPS (10 µg ml\(^{-1}\), 20 h). Data are expressed as mean ± s.e.m., where (n) equals the number of animals.

** p<0.01 for \(E_{\text{max}}\) and pEC\(_{50}\) values compared with control group using paired Student’s \(t\)-test.
4.4 Effect of COX-inhibition on LPS-induced changes in vascular reactivity to ET-1

Inhibition of COX by 10 µM indomethacin added 1 h before and during LPS incubation did not affect LPS-induced changes in vascular reactivity to ET-1. In the pulmonary artery, inhibition of COX did not cause a significant difference between control and LPS-treated rings (Figure 4.2a). In the aorta, inhibition of COX did not abolish the difference between control and LPS-treated aortic rings in response to ET-1 (Figure 4.2b), since the E_{max} was still reduced by 19±2% in LPS-treated group. Since removal of endothelium and inhibition of COX did not abolish LPS-induced aortic hyporeactivity to ET-1, mediators produced by COX, such as prostaglandins and TxA$_2$, are not a major pathway involved in vascular hyporeactivity to ET-1 induced by LPS.

4.5 Effect of ROS-inhibition on LPS-induced changes in vascular reactivity to ET-1

Inhibition of ROS by 200 µM trolox (a cell-permeable, water-soluble derivative of vitamin E with potent antioxidant properties) added 1 h before and during LPS incubation did not affect LPS-induced changes in vascular reactivity to ET-1. In the pulmonary artery, inhibition of ROS did not cause a significant difference between control and LPS-treated rings (Figure 4.3a). Similarly, inhibition of ROS did not abolish the difference between control and LPS-treated aortic rings in response to ET-1 (Figure 4.3b), where the E_{max} was still reduced by 20±3%. These results suggest that ROS does not play a major role in LPS-induced changes in vascular reactivity to ET-1.
Figure 4.2 Effect of indomethacin on LPS-induced changes in vascular reactivity to ET-1 in the pulmonary artery and the aorta. Contraction to ET-1 (0.3 nM-100 nM) was measured in the pulmonary artery (a) and the aorta (b) after incubation with LPS (10 µg ml⁻¹, 20 h) in the presence of 10 µM indomethacin. Data are expressed as mean ± s.e.m., where (n) equals the number of animals. ** p<0.01 for Eₘₐₓ and pEC₅₀ values compared with control group using paired Student’s t-test.
Figure 4.3 Effect of trolox on LPS-induced changes in vascular reactivity to ET-1 in the pulmonary artery and the aorta. Contraction to ET-1 (0.3 nM-100 nM) was measured in the pulmonary artery (a) and the aorta (b) after incubation with LPS (10 µg ml⁻¹, 20 h) in the presence of 200 µM trolox. Data are expressed as mean ± s.e.m., where (n) equals the number of animals. ** p<0.01 for E_{max} and pEC_{50} values compared with control group using paired Student’s t-test.
4.6 Role of NO in LPS-induced changes in vascular reactivity to ET-1

4.6.1 Effect of LPS on eNOS and iNOS gene expression

The PCR primers designed for eNOS, iNOS and the housekeeping gene β-actin were tested first by using standard RT-PCR to detect the presence of the expected products at 60, 95 and 72 bp respectively (Figure 4.4). Melt-curve analyses, verifying specific amplification and the absence of secondary primers products and PCR standard curves of both the target (eNOS and iNOS) and reference (β-actin) genes are shown in Figure 4.5.

Although eNOS mRNA expression was changed by incubation in both the pulmonary artery and the aorta, but changes in eNOS mRNA expression at 4, 8 and 20 h were not significantly different between control and LPS-treated pulmonary (Figure 4.6a) or aortic rings (Figure 4.6b). This result, together with the absence of an effect of endothelium removal, confirms that eNOS is not involved in LPS-induced changes in vascular reactivity to ET-1. Conversely, continuous incubation with LPS resulted in enhanced gene expression of iNOS to a similar extent both in the pulmonary artery (Figure 4.6c) and the aorta (Figure 4.6d). This increase in iNOS gene expression was 666±103 % in the pulmonary artery and 1287±447% in the aorta when compared to their respective controls at 20 h. The presence of matching time controls ensures that the increase in iNOS is only due to LPS and not due to incubation itself. Moreover, all the time point controls and LPS-treated groups for each sample were pooled exactly from the same animals to prevent any changes due to genetic variation between different animals. These results suggest that LPS-induced expression of iNOS may contribute to changes in vascular reactivity to ET-1 through excessive NO production.
Figure 4.4 Representative PCR gel for eNOS, iNOS, ET-1, ET_A, ET_B and β-actin genes. RNA was extracted from LPS (10 µg ml^{-1})-treated rings after 20 h and reverse-transcribed into cDNA before carrying out standard PCR and detecting the products on agarose gel with ethidium bromide and UV-imaging.
Figure 4.5 Representative qRT-PCR standard curves and melting peaks for eNOS, iNOS and β-actin genes. RNA was extracted from control and LPS (10 µg ml⁻¹)-treated vascular rings at 0, 4, 8 and 20 h and reverse-transcribed into cDNA before carrying out quantitative RT-PCR using the Lightcycler.
Figure 4.6 LPS-induced changes in gene expression of eNOS and iNOS in the pulmonary artery and the aorta. RNA was extracted from control and LPS (10 µg ml⁻¹)-treated vascular rings at 0, 4, 8 and 20 h and reverse-transcribed into cDNA before carrying out qRT-PCR to detect changes in the gene expression of eNOS (a and b) and iNOS (c and d) in the pulmonary artery and aorta. Data are expressed as mean ± s.e.m., where (n) equals the number of independent experiments, each using duplicate PCR reactions from the same sample prepared from pooled tissue lysates of 2 animals. * p<0.05 compared with matching time-control using paired Student’s t-test. Data for iNOS (c and d) was presented before in Figure 3.4.
4.6.2 Effect of LPS on NO release

To detect if the LPS-induced iNOS expression is associated with NO overproduction the accumulation of nitrite and nitrate (NOx), as the breakdown products of NO, was measured in the culture medium. Incubation of the pulmonary artery and the aorta with LPS caused a significant 5- to 10- fold increase in NO release (p<0.01, n=5) (Figure 4.7). The increases in NO production were not significantly different between the two preparations. Co-incubation of pulmonary and aortic rings with LPS together with either the non-specific NOS-inhibitor L-NAME (100 µM) or the iNOS-specific inhibitor 1400W (1 µM) prevented the LPS-induced overproduction of NO in both vessels (Figure 4.7). This result confirms that LPS enhances NO release through increasing iNOS expression.

4.6.3 Effect of LPS on endothelium-dependent relaxation

Incubation of the pulmonary artery and the aorta with LPS caused a significant impairment of the endothelium-dependent relaxation. Vascular relaxation to ACh was significantly decreased by LPS in the pulmonary artery, as manifested by a decrease in E_{max} from 68±10 % to 41±5 % in the control and LPS-treated groups respectively (p<0.01, n=5) (Figure 4.8a). Similarly, vascular relaxation to ACh was significantly decreased by LPS in the aorta, as manifested by a decrease in E_{max} from 71±5 % to 56±3 % in the control and LPS-treated groups respectively (p<0.01, n=5) (Figure 4.8b). This result suggests that either eNOS activity or the downstream signalling of NO in the VSMCs is impaired.

4.6.4 Effect of LPS on endothelium-independent relaxation

Endothelium-independent vascular relaxation induced by SNP was significantly decreased (p<0.01, n=6) by LPS in the pulmonary artery, as manifested by a decrease in E_{max} from 64±7 % to 40±3 % in the control and LPS-treated groups respectively (Figure 4.9a). Conversely, there were no significant differences in SNP-induced vasorelaxation between control and LPS-treated groups in the aorta (Figure 4.9b). This result suggests that the downstream signalling of NO is selectively impaired by LPS in the pulmonary artery but not in the aorta.
Figure 4.7 Effect of LPS treatment on NO release from isolated rat pulmonary artery and aorta. NO release (total amount of nitrite plus nitrate, NOx) was determined in the supernatant spectrophotometrically using Greiss reagent after reduction of nitrate to nitrite. LPS-induced NO overproduction was inhibited by co-incubation with either L-NAME (100 µM) or 1400W (1 µM). Data are expressed as mean ± s.e.m., where (n) equals the number animals. **p<0.01 compared with control group, ## p<0.01 compared with LPS group using one-way ANOVA followed by Dunnett’s post-hoc test.
Figure 4.8 Effect of LPS on ACh-induced relaxation in the pulmonary artery and the aorta. LPS (10 µg ml\(^{-1}\), 20 h)-treated pulmonary (a) and aortic (b) arterial rings were preconstricted with 30 nM ET-1 before measuring relaxation responses to ACh (1 nM-30 µM). Data are expressed as mean ± s.e.m., where (n) equals the number animals. **p<0.01 for E\(_{\text{max}}\) and pEC\(_{50}\) values compared with control group using paired Student’s t-test.
Figure 4.9 Effect of LPS on SNP-induced relaxation in the pulmonary artery and the aorta. LPS (10 µg ml\(^{-1}\), 20 h)-treated pulmonary (a) and aortic (b) arterial rings were preconstricted with 30 nM ET-1 before measuring relaxation responses to SNP (1 nM-30 µM). Data are expressed as mean ± s.e.m., where (n) equals the number animals. ##p<0.01 for \(E_{\text{max}} \) values compared with control group using paired Student’s \(t \)-test.
4.6.5 Effect of LPS on NO-independent direct sGC activation

Incubation of the pulmonary artery and the aorta with LPS caused a differential effect on the relaxation induced by the direct NO-independent sGC activator BAY 41-2272. Vascular relaxation to BAY 41-2272 was significantly decreased (p<0.01, n=4) by LPS in the pulmonary artery (Figure 4.10a), as manifested by a 32±8 % decrease in E_{max}. Conversely, BAY 41-2272-induced relaxation was significantly increased in the aorta (p<0.01, n=4) (Figure 4.10b) as manifested by a 15±7 % increase in E_{max}. These results suggest that sGC activation, the main downstream signalling pathway for NO, is impaired by LPS in the pulmonary artery, while it is enhanced in the aorta.

4.6.6 Effect of LPS on relaxation induced by PDE-resistant cGMP analogue

To assess whether LPS-mediated pulmonary hyporeactivity to SNP was due to decreased cGMP or impaired downstream cGMP-effector signalling molecules (such as PKG), the relaxation response to the PDE-resistant cGMP analogue 8-pCPT-cGMP was studied. LPS treatment had no significant effect on relaxation responses to 8-pCPT-cGMP either in the pulmonary artery (Figure 4.11a) or in the aorta (Figure 4.11b). These results suggest that pulmonary hyporeactivity to SNP is likely to be due to either decreased cGMP synthesis by sGC or increased cGMP degradation (mainly by PDE5), or both.

4.6.7 Effect of LPS on SNP-induced cGMP production

Incubation with LPS significantly decreased (p<0.05, n=4) the SNP-stimulated cGMP production in the pulmonary artery by 24±4 % from 4.15±0.23 to 3.13±0.18 pmole mg$^{-1}$ tissue, whereas cGMP levels in the aorta were not significantly affected (Figure 4.12). These results confirm that cGMP synthesis is impaired by LPS in the pulmonary artery but not in the aorta.
Figure 4.10 Effect of LPS on BAY 41-2272-induced relaxation in the pulmonary artery and the aorta. LPS (10 μg ml\(^{-1}\), 20 h)-treated pulmonary (a) and aortic (b) arterial rings were preconstricted with 30 nM ET-1 before measuring relaxation to BAY 41-2272 (1 nM-10 μM). Data are expressed as mean ± s.e.m., where (n) equals the number animals. ##p< 0.01 for \(E_{\text{max}}\), **p<0.01 for \(E_{\text{max}}\) and pEC\(_{50}\) values compared with control group using paired Student’s \(t\)-test.
Figure 4.11 Effect of LPS on 8-pCPT-cGMP-induced relaxation in the pulmonary artery and the aorta. LPS (10 µg ml\(^{-1}\), 20 h)-treated pulmonary (a) and aortic (b) arterial rings were preconstricted with 30 nM ET-1 before measuring relaxation to the non-hydrolysable cGMP analogue 8-pCPT-cGMP (0.1 µM-100 µM). Data are expressed as mean ± s.e.m., where (n) equals the number animals.
Figure 4.12 Effect of LPS on SNP-induced cGMP production in the pulmonary artery and the aorta. Pulmonary and aortic rings from LPS (10 µg ml\(^{-1}\), 20 h)-treated and control groups were stimulated by SNP (100 µM for 10 min) in the presence of the non-selective PDE-inhibitor IBMX (100 µM), freeze-dried and cGMP levels were determined by ELISA. Data are expressed as mean ± s.e.m., where (n) equals the number animals. *p<0.05 compared with control group using paired Student’s t-test.
4.6.8 Effect of iNOS inhibition on LPS-induced changes in vascular reactivity to ET-1

In the pulmonary artery, inhibition of iNOS did not cause a significant difference between control and LPS-treated rings (Figure 4.13a). In the aorta, inhibition of iNOS did not abolish the difference between control and LPS-treated aortic rings in response to ET-1 (compare Figure 3.5 with Figure 4.13b), where the E_{max} was still reduced by 16±1% as a result of LPS treatment. These results suggest the presence of mediator(s) other than iNOS-derived NO that play a major role in LPS-induced changes in vascular reactivity to ET-1.

4.6.9 Effect of sGC inhibition on LPS-induced changes in vascular reactivity to ET-1

In contrast with iNOS inhibition, inhibition of sGC by incubation with 10 µM ODQ abolished the LPS-induced changes in vascular reactivity to ET-1. In the pulmonary artery, inhibition of sGC did not cause a significant difference between control and LPS-treated rings (Figure 4.14a). In contrast, inhibition of sGC prevented the LPS-induced decrease in contraction to ET-1 in the aorta (Figure 4.14b). These results suggest that LPS induces sGC activation through mediator(s) other than NO, leading to aortic hyporeactivity to ET-1.

4.6.10 Effect of LPS on protein expression level of sGC subunits

In the pulmonary artery, LPS pre-treatment caused a significant decrease ($p<0.01$, n=4) in protein expression levels of sGC$_{\beta 1}$ subunit by 36±7 % (protein density ratio to β-actin), while the expression of the sGC$_{\alpha 1}$ subunit was not significantly affected (Figure 4.15). In contrast, LPS did not significantly change the protein expression levels of either sGC subunits in the aorta (Figure 4.15). Since both subunits are required for sGC function, the decrease in the protein expression level of one subunit (sGC$_{\beta 1}$ in the pulmonary artery) would impair sGC activity.
Figure 4.13 Effect of 1400W on LPS-induced changes in vascular reactivity to ET-1 in the pulmonary artery and the aorta. Contraction to ET-1 (0.3 nM-100 nM) was measured in the pulmonary artery (a) and the aorta (b) after incubation with LPS (10 µg ml⁻¹, 20 h) in the presence of 10 µM 1400W. Data are expressed as mean ± s.e.m., where (n) equals the number animals. ** p<0.01 for Eₘₐₓ and pEC₅₀ values compared with control group using paired Student’s t-test.
Figure 4.14 Effect of ODQ on LPS-induced changes in vascular reactivity to ET-1 in the pulmonary artery and the aorta. Contraction to ET-1 (0.3 nM-100 nM) was measured in the pulmonary artery (a) and the aorta (b) after incubation with LPS (10 µg ml⁻¹, 20 h) in the presence of 10 µM ODQ. Data are expressed as mean ± s.e.m., where (n) equals the number animals.
Figure 4.15 Effect of LPS on protein expression levels of sGCα1 and sGCβ1, in the pulmonary artery and the aorta. (a): representative immunoblots for sGCα1 and sGCβ1 in the pulmonary artery (left) and the aorta (right). (b): densitometric ratio of sGC protein subunits normalized to β-actin in the pulmonary artery (left) and the aorta (right). Data are expressed as mean ± s.e.m., where (n) equals the number animals. **p<0.01 compared with control group using paired Student’s t-test.
4.6.11 Effect of LPS on relaxation responses induced by PDE5 inhibition

The role of PDE5 activity in LPS-induced impairment of vasorelaxation in the pulmonary artery was investigated using the potent and highly selective PDE5 inhibitor T-0156. Relaxation responses to T-0156 were significantly increased by LPS in the pulmonary artery, as manifested by an increase in E_{max} from 75±5 % to 94±2 % in the control and LPS-treated groups respectively (p<0.01, n=6) (Figure 4.16a). Conversely, LPS treatment did not have a significant effect on T-0156-induced relaxation in the aorta (Figure 4.16b). These results suggest that PDE5 expression or activity could be increased by LPS treatment in the pulmonary artery but not in the aorta.

4.6.12 Effect of LPS on protein expression level of PDE5

For the protein expression levels of PDE5, two bands were obtained at 95 and 85 kDa since PDE5 is dimeric (Lin et al., 2006). LPS treatment of the pulmonary artery and the aorta did not significantly alter PDE5 protein expression levels in either vessel (Figure 4.17a and b). These results therefore suggest that the LPS-induced increase in the effects of T-0156 in the pulmonary artery is likely due to changes in PDE5 activity.
Figure 4.16 Effect of LPS treatment on T-0156-induced relaxation in the pulmonary artery and the aorta. LPS (10 µg ml⁻¹, 20 h)-treated pulmonary (a) and aortic (b) arterial rings were preconstricted with 30 nM ET-1 before measuring relaxation to T-0156 (0.1 nM-100 nM). Data are expressed as mean ± s.e.m., where (n) equals the number animals. **p<0.01 for E_max and pEC_{50} values compared with control group using paired Student’s t-test.
Figure 4.17 Effect of LPS on the protein expression levels of PDE5. (a) representative immunoblots for PDE5 in the pulmonary artery (left) and the aorta (right). (b) densitometric ratio of PDE5 protein subunits normalized to β-actin in the pulmonary artery and the aorta. Data are expressed as mean ± s.e.m., where (n) equals the number animals.
4.7 Discussion

The results presented in this chapter show that LPS activates sGC through a NO-independent pathway in the aorta. The effect of this activation is impaired in the pulmonary artery by decreasing protein expression of sGCβ1 and by increasing PDE5 activity. As a consequence, LPS causes selective hypococontractility to ET-1 only in the aorta, while the pulmonary artery is not affected.

In both vessels, LPS significantly increased NO production via iNOS, as it was blocked by the selective iNOS inhibitor 1400W (1 µM). Such LPS-induced NO overproduction through iNOS was reported previously in the aorta (Griffiths et al., 1995) and in the pulmonary artery (Bishop-Bailey et al., 1997). We found, however, that ET-1 mediated contraction was significantly impaired only in the aorta but not in the pulmonary artery, a finding similar to observations in clinical sepsis where systemic vasodilation and pulmonary hypertension occurs (Manthous et al., 1993; Lorente et al., 1993) and to an ex vivo rat endotoxemic model using phenylephrine (McIntyre, Jr. et al., 1997).

Endothelial removal did not affect vascular changes induced by LPS which is consistent with previous reports (McKenna, 1990; Hall et al., 1996; O'Brien et al., 2001), suggesting that endothelium does not play a major role in LPS-induced aortic hypococontractility to ET-1. Moreover, the expression of eNOS was not different between control and LPS-treated pulmonary and aortic vascular rings, while relaxation to ACh, an endothelium-dependent vasorelaxant, was impaired in both vessels. The impaired endothelium-dependent relaxations observed in endotoxemic blood vessels may result from several mechanisms including alteration in eNOS expression, activation, and signal transduction in addition to the mechanisms involved in NO release and degradation (Matsuda & Hattori, 2007). The eNOS expression has been shown to be diminished in blood vessels from rabbits (Matsuda et al., 2003) and in lung tissues from mice (Matsuda et al., 2004) following induction of sepsis with LPS. Furthermore, it has been demonstrated that sepsis causes a progressive and profound reduction in phosphorylation of eNOS in rabbit mesenteric arteries, possibly as a result of impaired phosphatidylinositol-3-kinase pathway (Matsuda et al., 2006), suggesting less production of NO by eNOS in sepsis. Since
eNOS expression was not changed in this study, but ACh relaxation was decreased, it appears that either eNOS activity or the downstream signalling of NO is impaired. It is also worth noting that the impaired relaxation to ACh observed in both vessels is probably not involved in hypocontractility to ET-1 which was found only in the aorta.

LPS is also known to induce the expression of COX-2 (Bishop-Bailey et al., 1997), suggesting that additional mechanisms are likely to contribute to LPS-induced changes in vascular reactivity. Inhibition of COX with indomethacin did not abolish the difference in contractile responses to ET-1 in LPS-treated aortic rings, indicating that COX may not play a major role in the present model. Similar results have been previously shown, where inhibition of COX-1 and/or COX-2 pathways does not reverse hypotension or vascular hyporeactivity induced by LPS (Bernard et al., 1997; Leach et al., 1998; O’Brien et al., 2001). Similarly, inhibition of ROS, which could impair vascular reactivity, did not have a profound effect on LPS-induced changes in vascular reactivity to ET-1, suggesting a little role for ROS in the present system.

The selective inhibition of iNOS by 1400W was unable to prevent the aortic hypocontractility to ET-1, although the same concentration of 1400W did suppress the NO overproduction in both vessels. On the other hand, incubation with the sGC inhibitor ODQ prevented aortic LPS-induced hypocontractility to ET-1, leading to the conclusion that the hypocontractility is mediated through NO-independent regulator(s) of sGC activity. In addition, the aortic relaxation responses to the novel non-NO-based heme-dependent sGC activator BAY 41-2272 (Stasch et al., 2001; Boerrigter & Burnett, Jr., 2007) were enhanced in the aorta, confirming that LPS treatment enhances NO-independent sGC activation in the aorta. These experiments show that inhibition of sGC could be more effective than NOS inhibition in preventing vascular hyporeactivity induced by LPS in systemic arteries.

LPS treatment in the present study decreased pulmonary artery relaxation responses to both the NO donor SNP and the sGC activator BAY 41-2272, suggesting that LPS treatment impairs sGC/cGMP pathway activation (both NO-dependent and independent) in the pulmonary artery. This impairment in sGC/cGMP pathway could be either due to an altered cGMP synthesis and/or
metabolism, or due to downstream changes in cGMP-effector signalling molecules such as PKG. Because the relaxation to the non-hydrolysable cGMP analogue 8-pCPT-cGMP was not affected in the LPS-treated vessels, cGMP-effector signalling molecules are not involved; leaving the likelihood that LPS modifies cGMP synthesis and/or degradation.

The involvement of the reduced synthesis of cGMP in the pulmonary artery is indicated by decreased sGC activity and was confirmed by a significant decrease in the expression of the sGCβ1 subunit. Since both sGC subunits are required for the enzyme activity, reduced levels of either subunit lead to reduced sGC activity. Importantly, sGCβ1 contains the major heme binding domain and seems to be more rapidly and robustly regulated after inflammatory stimuli (Takata et al., 2001; Friebe & Koesling, 2003). Although previous studies demonstrate the involvement of sGC modulation in LPS-induced effects, these studies detected sGC in whole lung tissue or in isolated VSMCs, but not in isolated pulmonary arteries. For example, LPS decreases sGC activity and sGCβ1 protein expression in rat lung (Fernandes et al., 2006) and the expression of sGCβ1 mRNA and both sGC protein subunits in mice lung (Glynos et al., 2007). It is noteworthy that LPS decreases sGCα1 but not sGCβ1 expression in cultured rat aortic (Papapetropoulos et al., 1996) or pulmonary (Scott & Nakayama, 1998) smooth muscle cells, raising the possibility that expression of sGC subunits may be influenced by cell isolation or culture.

Besides reduced cGMP synthesis by sGC, an increased degradation of cGMP by PDE5 could also contribute to NO hyporeactivity in the pulmonary artery. This was directly confirmed using T-0156, a potent and highly selective PDE5 inhibitor (Mochida et al., 2002). Since the enhanced pulmonary artery relaxation to T-0156 in LPS-treated tissue was not associated with changes in protein expression of PDE5, the most likely explanation is that the activity of PDE5 was increased. An increased PDE5 activity was demonstrated in perfused rat lungs isolated from rats 18 h after LPS injection (Holzmann et al., 1996) and 1 h after LPS inhalation in guinea pig lungs (Toward et al., 2005) but was decreased after 48 h in the same model. The mechanism for increased PDE5 activity could include PKG-mediated phosphorylation and allosteric cGMP binding (either of which will upregulate PDE5 activity) and a decreased PP1 phosphatase activity and/or expression (Lin et al.,
Chapter 4-LPS & Vasoactive Mediators

2006). The latter will lead to a decreased dephosphorylation of PDE5, leading to maintained or enhanced PDE5 activity (Lin et al., 2006). Since the results with the non-hydrolysable cGMP analogue suggest that downstream cGMP-effector signalling molecules are not affected by pre-treatment of vessels with LPS, downregulation of PP1 phosphatase activity and/or expression seems likely.

In sepsis, excessive vasodilation is counterbalanced by increased release of vasoconstrictors such as ET-1 and angiotensin II (Knotek et al., 2000), therefore reduced sensitivity to sGC activation and increased PDE5 activity in pulmonary arteries could contribute to the development of pulmonary hypertension during sepsis. These mechanisms could also explain, at least in part, why a significant fraction (up to 30%) of pulmonary hypertensive patients fail to respond to therapeutic doses of inhaled NO (Holzmann et al., 1996).

4.8 Summary and conclusions

By using an organ culture method and different inhibitors to the vasoactive mediators that could be involved in LPS-induced changes in vascular reactivity to ET-1 in the pulmonary artery and the aorta, the main findings are:

1- LPS-induced changes in vascular reactivity to ET-1 were not affected by endothelium removal, COX inhibition, ROS inhibition, or iNOS inhibition, but were abolished by sGC inhibition.

2- eNOS expression was not significantly affected by LPS, but iNOS expression was progressively increased leading to NO overproduction in both the pulmonary artery and the aorta.

3- Endothelium-dependent relaxation was impaired by LPS in both vessels, but endothelium-independent relaxation and cGMP production was impaired only in the pulmonary artery.

4- Relaxation responses to PDE-resistant cGMP analogue was not affected in either vessel, while relaxation to a direct sGC activator was decreased in the pulmonary artery and increased in the aorta.
5- The sGCβ1 protein expression was decreased only in the pulmonary artery, while sGCα1 expression was not affected in either vessel.

6- LPS increased relaxation responses to the PDE5 inhibitor T-0156 only in the pulmonary artery, but without changes in PDE5 protein expression.

In conclusion, LPS treatment in vitro causes a selective hypocontractility of rat aorta to ET-1, which is largely mediated by NO-independent activation of sGC. The pulmonary artery is not affected because LPS induces a desensitization of the sGC/cGMP dependent pathway by decreasing protein expression levels of sGCβ1, and hence sGC activity, and increasing PDE5 activity. Neither endothelium, COX nor ROS are involved in these LPS effects. Therefore, sGC and/or PDE5-selective inhibitors could be important in controlling systemic and pulmonary vasomotor complications in sepsis.
Chapter 5

Result III: Molecular Mechanisms Involved in LPS-induced Changes in Vascular Reactivity
Chapter 5

5.1 Introduction

Numerous experimental studies of sepsis have clearly documented the presence of both in vivo and in vitro vascular hyporesponsiveness to α-adrenergic agonists (Guc et al., 1990; O’Brien et al., 2001; Farmer et al., 2003), AngII (Umans et al., 1993), KCl (Wakabayashi et al., 1987; Umans et al., 1993), ET-1 (Curzen et al., 1997; Ishimaru et al., 2001), serotonin (Wakabayashi et al., 1987; Umans et al., 1993), vasopressin (Guc et al., 1990) and TxA₂ (Piepot et al., 2002; Boer et al., 2005). Vascular hyporesponsiveness could be mediated either by an increase in vasodilating or a decrease in vasoconstricting mechanisms. Excessive production of vasodilator molecules, such as NO, has been shown to contribute to the hypotension and vasoplegia in septic shock (Lorente et al., 1993; Szabo et al., 1995; Liu et al., 1997), however inhibition of NO production yields conflicting results.

Membrane hyperpolarization by K⁺ channel opening, mainly the BK and Kₐ₅ ATP channels, has been shown to account for the observed vascular hyporeactivity of septic shock (Chen et al., 2000; Farias et al., 2002; Wu et al., 2004; O’Brien et al., 2005; Pickkers et al., 2006). Using different blockers for Kₐ₅ ATP and BK resulted in conflicting results. For example, the Kₐ₅ ATP channel inhibitor glibenclamide restored blood pressure in canine, porcine and rat in vivo models of LPS-induced shock (Wu et al., 1995; Vanelli et al., 1995; Gardiner et al., 1999; Sorrentino et al., 1999), but had no effect on vascular hyporeactivity in all ex vivo organ bath studies to date (Wu et al., 1995; Taguchi et al., 1996). Similarly, the BK channel inhibitor iberiotoxin restored aortic hyporeactivity to phenylephrine in endotoxemic rat ex vivo (Taguchi et al., 1996), but did not protect against LPS-induced mortality in mice (Cauwels & Brouckaert, 2008).

Receptor-mediated vasoconstriction, which may also be affected in sepsis, could involve changes in receptor expression, Ca²⁺-entry pathways, [Ca²⁺], and Ca²⁺ sensitization. Only a limited number of studies have examined the role of Ca²⁺ entry pathways in sepsis-induced vascular hyporeactivity without investigating Ca²⁺ sensitization or changes in receptor expression in the same model. For example, mesenteric hyporeactivity to the α-adrenergic agonist methoxamine in rat (Farmer et
al., 2003) or hyperreactivity to ET-1 in pig (Jones et al., 1999) were not associated with changes in [Ca\(^{2+}\)\(_i\)], while aortic vascular hyporeactivity to KCl was associated with enhanced Ca\(^{2+}\) uptake (Wakabayashi et al., 1987) or with no change in [Ca\(^{2+}\)\(_i\)], release (Biguad et al., 1990).

The mechanisms involved in LPS-induced changes in vascular reactivity to ET-1 in the pulmonary artery and the aorta were evaluated by measuring changes in the expression levels of mRNA of ET-1, ET\(_A\) and ET\(_B\) and the expression levels of PKC and phosphorylation of MLC\(_{20}\), ROK\(\alpha\), CPI-17 and MYPT1. The role of external Ca\(^{2+}\) and changes in [Ca\(^{2+}\)\(_i\)] have also been studied.

5.2 Methods

Pulmonary and aortic arterial rings were incubated with LPS (10 µg ml\(^{-1}\), 20 h) before measuring the following:

- mRNAs expression levels of ET-1 and its receptors (ET\(_A\) or ET\(_B\)) by qRT-PCR.
- contractile responses to ET-1 (0.3 nM-100 nM) in the presence or absence of external Ca\(^{2+}\), K\(_{ATP}\) inhibitor glibenclamide (10 µM) or BK inhibitor iberiotoxin (100 nM).
- relaxation responses to the L-type VOCCs blocker nifedipine (1 nM-30 µM), PKC inhibitor Ro-31-8425 (300 nM), ROK\(\alpha\) inhibitor Y-27632 (100 nM-30 µM) and the ROCCs and SOCCs blocker SKF-96365 (10 µM).
- the expression levels of PKC and phosphorylation of MLC\(_{20}\), ROK\(\alpha\), CPI-17 and MYPT1 by Immunoblotting
- changes in aortic VSMCs [Ca\(^{2+}\)\(_i\)] induced by ET-1 in the presence or absence of external Ca\(^{2+}\), 20 µM diltiazem or 10 µM SKF-96365.
- contractile responses to ET-1 (0.3 nM-100 nM) in the presence of the protein synthesis inhibitor cycloheximide (10 µM)
5.3 Effect of LPS-pretreatment on gene expression of ET-1, ET\textsubscript{A} and ET\textsubscript{B} in pulmonary and aortic vascular rings

The PCR primers designed for ET-1, ET\textsubscript{A} and ET\textsubscript{B} together with the housekeeping gene β-actin were tested first by using normal PCR to detect presence of the expected products at 66, 71, 107 and 72 bp respectively (Figure 4.4). Melt-curve analyses, verifying specific amplification and absence of secondary primers products, and PCR standard curves of both the target (ET-1, ET\textsubscript{A} and ET\textsubscript{B}) and reference (β-actin) genes are shown in Figure 5.1.

Incubation of the pulmonary and aortic rings with LPS for 4, 8 or 20 h did not result in significant differences in the mRNAs expression levels of ET-1, ET\textsubscript{A} or ET\textsubscript{B} (Figure 5.2) when compared with the their matched time-controls. This evidence argues against the involvement of changes in gene expression of ET-1 and its receptors in the observed LPS-induced aortic hyporeactivity to ET-1. However, it is acknowledged that the strength of this conclusion is limited by the small number of observations.
Figure 5.1 Representative qRT-PCR standard curves and melting peaks for ET-1, ET\textsubscript{A} and ET\textsubscript{B}. RNA was extracted from control and LPS (10 µg ml-1)-treated vascular rings at 0, 4, 8 and 20 h and reverse-transcribed into cDNA before carrying out quantitative RT-PCR using the Lightcycler.
Figure 5.2 Effect of LPS on gene expression of ET-1, ET_A and ET_B in the pulmonary artery and the aorta. RNA was extracted from control and LPS (10 µg ml\(^{-1}\))-treated vascular rings at 0, 4, 8 and 20 h and reverse-transcribed into cDNA before carrying out qRT-PCR to detect changes in the gene expression of ET-1 (a and b), ET_A (b and c) and ET_B (e and f) in the pulmonary artery and aorta respectively. Data are expressed as mean ± s.e.m., where (n) equals the number of independent experiments, each using duplicate PCR reactions from the same sample prepared from pooled tissue lysates of 2 animals.
5.4 Effect of external Ca2+ removal on LPS-induced changes in vascular reactivity to ET-1

As previously mentioned in chapter 3, LPS selectively causes hyporeactivity to ET-1 in the aorta but not in the pulmonary artery (Figure 3.5). Removal of external Ca2+ had a significant effect on this selective LPS-induced vascular reactivity to ET-1. In the pulmonary artery, removal of external Ca2+ decreased maximal contractility to ET-1 as manifested by the decreased E_{max} for both the control (from 4.3±0.2 mN to 1.1±0.1 mN) and LPS-treated (from 4.4±0.2 mM to 1.0±0.1 mN) without revealing a difference between both of them (Figure 5.3a). Similarly, removal of external Ca2+ decreased E_{max} for both the control (from 8.0±0.4 mN to 4.0±0.4 mN) and LPS-treated (from 6.0±0.4 mN to 4.0±0.3 mN) aortic rings. However, this decrease in E_{max} in the aorta by removal of external Ca2+ abolished the difference in ET-1-induced contractions in the control and LPS-treated aortic rings (Figure 5.3b). This result suggests that external Ca2+ plays a major role in LPS-induced changes in vascular reactivity to ET-1.

5.5 Effect of external Ca2+ addition on LPS-induced changes in vascular reactivity to ET-1

In experiments performed to determine the role of Ca2+ influx, the addition of Ca2+ (0.1-10 mM) to pulmonary and aortic rings preconstricted with 100 nM ET-1 resulted in a stepwise increase in vessel contraction (Figure 5.4). The E_{max} values of this stepwise contractile response to Ca2+ addition was not affected by LPS-pretreatment in the pulmonary artery (Figure 5.5a), but it was significantly reduced by 56±8 % after LPS-pretreatment in aortic rings (p<0.01, n=5) (Figure 5.5b). The presence of the L-type VOCCs blocker nifedipine (10 µM) had no significant effect on contractile responses to external Ca2+. This result suggests that external Ca2+ influx through non-VOCCs plays a major role in LPS-induced changes in vascular reactivity to ET-1.
Figure 5.3 Effect of removal of external Ca2+ on LPS-induced changes in vascular reactivity to ET-1 in the pulmonary artery and the aorta. Contraction to ET-1 (0.3 nM-100 nM) was measured in the absence of external Ca2+ in the pulmonary artery (a) and aorta (b) after incubation with LPS (10 µg ml-1, 20 h). Data are expressed as mean ± s.e.m., where (n) equals the number of animals.
Figure 5.4 Representative control trace of contractile response to Ca2+ addition. This trace is showing the effect of subsequent increases in extracellular Ca2+ on the aorta preconstricted with 100 nM ET-1 in the presence of 10µM nifedipine. The starting point of Ca2+ addition at the plateau of ET-1 contraction was taken as the baseline for the Ca2+ response curve.
Figure 5.5 Effect of LPS on contractile responses to Ca\(^{2+}\) addition in the pulmonary artery and the aorta preconstricted with ET-1. Contraction responses to the addition of Ca\(^{2+}\) (0.1-10 mM) was measured in control and LPS (10 µg ml\(^{-1}\), 20 h)-treated pulmonary (a) and aortic (b) rings preconstricted with 100 nM ET-1 in presence of 10µM nifedipine. The starting point of Ca\(^{2+}\) addition at the plateau of ET-1 contraction was taken as the baseline for the Ca\(^{2+}\) response curve. Data are expressed as mean ± s.e.m., where (n) equals the number animals. ** p<0.01 for E\(_{\text{max}}\) and pEC\(_{50}\) values compared with control group using paired Student’s t-test.
5.6 Effect of VOCCs blocking on LPS-induced changes in vascular reactivity to ET-1

Blocking of L-type VOCCs by nifedipine caused approximately a 50% relaxation of both the pulmonary (Figure 5.6a) and aortic (Figure 5.6b) rings preconstricted with 30 nM ET-1, suggesting the presence of other types of Ca\(^{2+}\) channels that is involved in ET-1-induced contractions. In both the pulmonary artery and the aorta, no significant changes were found between the control and LPS-treated vascular rings preconstricted with 30 nM ET-1 in the relaxation responses to nifedipine (0.1-30 μM), suggesting that changes in VOCCs are not responsible for LPS-induced aortic hyporeactivity to ET-1.

5.7 Effect of blocking of ROCCs and SOCCs on LPS-induced changes in vascular reactivity to ET-1

By using 10 μM SKF-96365, which is a blocker of ROCCs and SOCCs, a similar 50% relaxation was obtained in both the pulmonary and aortic rings preconstricted with 30 nM ET-1 (Figure 5.7) suggesting the involvement of ROCCs and/or SOCCs in ET-1-induced contractions. In the pulmonary artery, there was no significant difference in the relaxation induced by 10 μM SKF-96365 between control and LPS-treated rings. However, LPS-pretreatment decreased SKF-6365-induced relaxation in the aorta (p<0.05, n=4), suggesting that ROCCs and/or SOCCs could be downregulated or deactivated by LPS.
Figure 5.6 Effect of LPS on relaxation responses to nifedipine in the pulmonary artery and the aorta. Pulmonary (a) and aortic (b) arterial rings from control and LPS (10 µg ml$^{-1}$, 20 h)-treated groups were preconstricted with 30 nM ET-1 before measuring relaxation responses to nifedipine (1 nM- 30 µM). Data are expressed as mean ± s.e.m., where (n) equals the number animals.
Figure 5.7 Effect of LPS on relaxation responses to 10 µM SKF-96365 in the pulmonary artery and the aorta. Pulmonary and aortic arterial rings from control and LPS (10 µg ml⁻¹, 20 h)-treated groups were preconstricted with 30 nM ET-1 before measuring relaxation to 10 µM SKF-96365. Data are expressed as mean ± s.e.m., where (n) equals the number animals. * p<0.05 compared with control group using paired Student’s t-test.
5.8 Effect of K_{ATP} channels blocking on LPS-induced changes in vascular reactivity to ET-1

K_{ATP} channels represent a possible pathway that could be involved in LPS-induced vascular effects. Blocking of K_{ATP} channels by glibenclamide (10 μM, 30 min) caused no significance difference in ET-1-induced contraction between control and LPS-treated pulmonary artery (Figure 5.8a). In the aorta, glibenclamide did not abolished the LPS-induced hyporeactivity to ET-1 (Figure 5.8b), since there was still a 27±4 % decrease in E_{max} in the LPS group compared to control, suggesting that K_{ATP} channels are not affected by LPS treatment in this model.

5.9 Effect of BK channels blocking on LPS-induced changes in vascular reactivity to ET-1

BK channels are another important pathway that could play an important role in LPS-induced vascular hyporeactivity. Blocking of BK channels by incubation with 100 nM iberiotoxin for 30 min before measuring the contraction to ET-1 caused no significance difference in ET-1-induced contraction between control and LPS-treated pulmonary artery (Figure 5.9a). In the aorta, iberiotoxin did not abolish the LPS-induced hyporeactivity to ET-1 (Figure 5.9b), since there still a 25±4 % decrease in E_{max} in the LPS group compared to control, suggesting that BK channels are not involved in LPS-induced changes in contraction responses to ET-1.
Figure 5.8 Effect of glibenclamide on LPS-induced changes in contractile responses to ET-1 in the pulmonary artery and aorta. Control and LPS (10 µg ml⁻¹, 20 h)-treated pulmonary (a) and aortic (b) rings were incubated with the \(K_{\text{ATP}} \) channel blocker glibenclamide (10 µM, 30 min) before measuring the contraction to ET-1 (0.3 nM-100 nM). Data are expressed as mean ± s.e.m., where (n) equals the number animals. ** \(p < 0.01 \) for \(E_{\text{max}} \) and \(pEC_{50} \) values compared with control group using paired Student's \(t \)-test.
Figure 5.9 Effect of iberiotoxin on LPS-induced changes in contractile responses to ET-1 in the pulmonary artery and aorta. Control and LPS (10 µg ml⁻¹, 20 h)-treated pulmonary (a) and aortic (b) rings were incubated with the BK channel blocker iberiotoxin (100 nM, 30 min) before measuring the contraction to ET-1 (0.3 nM-100 nM). Data are expressed as mean ± s.e.m., where (n) equals the number animals. ** p<0.01 for E_max and pEC50 values compared with control group using paired Student’s t-test.
5.10 Effect of ROKα inhibitor on LPS-induced changes in vascular reactivity to ET-1

Y-27632 is a selective inhibitor of ROKα that affects Ca$^{2+}$ sensitization by removing the inhibitory effect of ROKα on MLCP leading to relaxation. ROKα is involved in several pathological conditions and could represent a possible pathway through which LPS can cause vascular hyporeactivity. Application of Y-27632 (100 nM-30 µM) on pulmonary and aortic rings preconstricted with 30 nM ET-1 resulted in a full relaxation. In both vessels, there was no significance difference in the relaxation responses induced by Y-27632 between control and LPS-treated pulmonary artery (Figure 5.10a) and aorta (Figure 5.10b), suggesting that Ca$^{2+}$ sensitization through the ROKα pathway is not affected by LPS treatment in this model.

5.11 Effect of PKC inhibitor on LPS-induced changes in vascular reactivity to ET-1

Ro-31-8425 is a non-selective PKC inhibitor that can cause relaxation similar to ROKα inhibitor by by removing the inhibitory effect of PKC on MLCP. PKC is an important pathway involved in the mechanism of contraction of several vasoactive agents, including ET-1. PKC inhibition or downregulation could be a possible pathway involved in LPS-induced vascular hyporeactivity. Inhibition of PKC by adding 300 nM Ro-31-8425 on pulmonary and aortic rings preconstricted with 30 nM ET-1 resulted in around 50 % relaxation of the vessels (Figure 5.11). The relaxation responses induced by Ro-31-8425 in control group were not significantly different from that of LPS-treated groups in both the pulmonary artery and the aorta, suggesting that changes in PKC are not involved in LPS-induced changes in contraction responses to ET-1.
Figure 5.10 Effect of Y-27632 on LPS-induced changes in contractile responses to ET-1 in the pulmonary artery and aorta. Pulmonary (a) and aortic (b) arterial rings from control and LPS (10 µg ml\(^{-1}\), 20 h)-treated groups were preconstricted with 30 nM ET-1 before measuring relaxation responses to Y-27632 (100 nM- 30 µM). Data are expressed as mean ± s.e.m., where (n) equals the number animals.
Figure 5.11 Effect of Ro-31-8425 on LPS-induced changes in contractile responses to ET-1 in the pulmonary artery and aorta. Pulmonary (a) and aortic (b) arterial rings from control and LPS (10 µg ml⁻¹, 20 h)-treated groups were preconstricted with 30 nM ET-1 before measuring relaxation responses to Ro-31-8425 (300 nM). Data are expressed as mean ± s.e.m., where (n) equals the number animals.
5.12 Effect of LPS-pretreatment on the expression of different proteins involved in Ca\(^{2+}\)-sensitization induced by ET-1

Phosphorylation of MLC\(_{20}\) is the major step leading to contraction of VSMCs, and this phosphorylation can be controlled by the level of [Ca\(^{2+}\)]\(_i\) or through the Ca\(^{2+}\)-sensitization that depends mainly on the activity of MLCP. In both the pulmonary artery and the aorta, contraction with ET-1 caused a significant increase in the phosphorylation of MLC\(_{20}\) (p<0.05, n=4) (Figure 5.12). ET-1-stimulated phosphorylation of MLC\(_{20}\) was not affected by LPS-pretreatment in the pulmonary artery (Figure 5.12 a and b), but was significantly decreased in the aorta (p<0.05, n=4) (Figure 5.12 c and d), a result in line with the observed aortic hypocontractility to ET-1 (Figure 3.5).

To measure changes in the proteins involved in Ca\(^{2+}\)-sensitization, PKC, ROK\(\alpha\), CPI-17 and MYPT1 were investigated in both the pulmonary artery and the aorta. There were no significant changes in the ET-1-induced changes in the protein expression levels of PKC or the phosphorylation levels of ROK\(\alpha\), CPI-17 or MYPT1 between control and LPS-pretreated vascular rings (Figure 5.13). These results suggest that ET-1-induced sensitization to Ca\(^{2+}\) are not altered in LPS-pretreated pulmonary artery and aorta.
Figure 5.12 Effect of LPS on ET-1-induced phosphorylation of MLC$_{20}$ in the pulmonary artery and aorta. (a, c) Representative immunoblots for pMLC$_{20}$ and MLC$_{20}$ in the pulmonary artery and the aorta from control (C), (LPS), control + 100 nM ET-1 (C+ET) and LPS + 100 nM ET-1 (LPS+ET) groups. (b, d) densitometric ratio of pMLC$_{20}$ normalized to MLC$_{20}$ in the pulmonary artery and the aorta. Data are expressed as mean ± s.e.m., where (n) equals the number animals. * p<0.05 compared with control or LPS groups, # p<0.05 compared with C+ET group using one-way ANOVA with Student-Newman-Keuls Multiple Comparisons post-hoc test.
Figure 5.13 Effect of LPS on the protein expression levels of PKC and the phosphorylation levels of ROKα, CPI-17 and MYPT1 in the pulmonary artery and aorta. Representative immunoblots of PKC (a), pROKα (b), pCPI-17 (c) and pMYPT1 (d) in the pulmonary artery (left) and the aorta (right) from control (C), (LPS), control + 100 nM ET-1 (C+ET) and LPS + 100 nM ET-1 (LPS+ET) groups.
5.13 Effect of LPS-pretreatment on \([\text{Ca}^{2+}]_i\) changes induced by ET-1 in isolated aortic VSMCs

The resting level of \([\text{Ca}^{2+}]_i\) was significantly higher in LPS-treated VSMCs (106±5 nM) compared to control (94±5 nM) (p<0.05, n=12), but this difference was abolished when external \(\text{Ca}^{2+}\) was removed, where the baselines were 111±4 nM and 108±3 nM for LPS and control groups, respectively. Infusion of 100 nM ET-1 caused an initial increase in \([\text{Ca}^{2+}]_i\) (transient phase) followed by a continuous plateau elevation in \([\text{Ca}^{2+}]_i\) (sustained phase) (Figure 5.14b). There were no significant differences in the transient \([\text{Ca}^{2+}]_i\) increase induced by 100 nM ET-1 between control (111±10 nM) and LPS-treated (109±13 nM) aortic VSMCs. However, the sustained phase \([\text{Ca}^{2+}]_i\) level of control (26±3 % of transient phase in each cell) was significantly reduced to 15±2 % in the LPS-treated group (p<0.001, n=12) (Figure 5.14c). Removal of external \(\text{Ca}^{2+}\) had no significant effect on the transient phase \([\text{Ca}^{2+}]_i\) elevations in either the control (103±10 nM) or the LPS-treated (104±11 nM) group, but the sustained phase \([\text{Ca}^{2+}]_i\) was decreased in both control (11±1 %) and LPS-treated (11±2 %) groups which abolished the difference between control and LPS-treated groups (Figure 5.14c). Conversely, addition of 2.5 mM \(\text{Ca}^{2+}\) during the sustained phase, produced a continuous elevation in \([\text{Ca}^{2+}]_i\), which was significantly higher in control (210±17 %) compared to LPS-treated (155±12 %) groups (p<0.05, n=12) (Figure 5.15a and b). This continuous elevation in \([\text{Ca}^{2+}]_i\) was not significantly affected by incubation with 20 µM diltiazem for 5 minutes before the addition of the 2.5 mM \(\text{Ca}^{2+}\) (Figure 5.15b). However, incubation with 10 µM SKF-96365 significantly decreased the continuous elevation in \([\text{Ca}^{2+}]_i\) in both groups and abolished the difference between the control and LPS-treated groups (Figure 5.15b).
Figure 5.14 Effect of LPS on ET-1-induced changes of $[\text{Ca}^{2+}]_i$ in aortic VSMCs. (a) representative photos of the different shapes of isolated aortic VSMCs. (b) representative trace showing biphasic $[\text{Ca}^{2+}]_i$ changes induced by 100 nM ET-1 in control aortic VSMC. (c) The effect of external Ca^{2+} removal on sustained phase $[\text{Ca}^{2+}]_i$ induced by 100 nM ET-1. Data are expressed as % change from transient phase, n=12 cells prepared using tissue from 3 rats. ***p<0.01 compared with control group using paired Student’s t-test.
Figure 5.15 Effect of \(\text{Ca}^{2+} \) addition, diltiazem, and SKF-96365 on ET-1-induced changes of \([\text{Ca}^{2+}]_i\) in control and LPS-treated aortic VSMCs. (a) representative trace showing the effect of 2.5 mM \(\text{Ca}^{2+} \) addition on ET-1-induced biphasic \([\text{Ca}^{2+}]_i\) changes in control aortic VSMCs. (b) The effect of 20 \(\mu \text{M} \) diltiazem or 10 \(\mu \text{M} \) SKF-96365 on sustained phase \([\text{Ca}^{2+}]_i\) induced by addition of 2.5 mM \(\text{Ca}^{2+} \) to aortic VSMCs preconstricted with 100 nM ET-1. Data are expressed as % change from transient phase, \(n=12 \) cells prepared using tissue from 3 rats. *\(p<0.05 \) using one-way ANOVA with Student-Newman-Keuls Multiple Comparisons post-hoc test.
5.14 Effect of protein synthesis inhibition on LPS-induced changes in vascular reactivity to ET-1

To determine if LPS-induced changes are dependent on protein synthesis or not, pulmonary and aortic rings were incubated with the protein synthesis inhibitor cycloheximide (10 µM) 1 h before and during the incubation with LPS. In the pulmonary artery, there was no significance difference in the contraction responses to ET-1 between control and LPS-treated vascular rings (Figure 5.16a). In the aorta, cycloheximide abolished the difference in contractile responses to ET-1 induced by LPS (Figure 5.16b), suggesting that LPS-induced aortic hyporeactivity to ET-depends on protein synthesis.

Figure 5.16 Effect of cycloheximide on LPS-induced changes in contractile responses to ET-1 in the pulmonary artery and aorta. Contraction to ET-1 (0.3 nM-100 nM) was measured in the pulmonary artery (a) and the aorta (b) after incubation with LPS (10 µg ml⁻¹, 20 h) in presence of 10 µM cycloheximide. Data are expressed as mean ± s.e.m., where (n) equals the number animals.
5.15 Discussion

The results presented in this chapter show that LPS-induced vascular hypocontractility to ET-1 in rat aorta is primarily dependent on Ca^{2+} influx through non-VOCCs, but not on changes in ET-1 receptor expression or Ca^{2+} sensitization.

In the present study, LPS treatment impaired contractile responses of rat aorta to both receptor-dependent and -independent vasoconstrictors. Although changed expression of ET-1 specific receptors ET\textsubscript{A} and ET\textsubscript{B} has been suggested as a mechanism of hypocontractility, no systematic study has evaluated this possibility in intact arteries. Previous studies have shown that LPS treatment decreases ET\textsubscript{A} mRNA in rat heart (Ishimaru et al., 2001; Hirata & Ishimaru, 2002), aortic VSM cell line A7r5 (Bucher & Taeger, 2002) and rat pulmonary VSM (Dschietzig et al., 2008), but increases expression in septic pig heart (Forni et al., 2005). Conversely, increased ET\textsubscript{B} mRNA was observed in these previous studies but ET\textsubscript{B} mRNA was decreased in rat pulmonary ECs (Dschietzig et al., 2008). Few studies have examined ET-1 gene expression in intact arteries, where ET-1 mRNA is increased in mouse aorta (Shindo et al., 1998) and in rat aorta and pulmonary artery (Curzen et al., 1997), but was not affected in porcine aorta (Magder et al., 2001) by LPS treatment. Since LPS had no effect on the ET-1, ET\textsubscript{A} or ET\textsubscript{B} receptors mRNA levels, changes in the gene expression of ET-1 system is unlikely to be involved in LPS-induced hyporeactivity in the present model. Using different animals for control and LPS-treated groups can influence the outcome due to the difference in genetic background, but in the present model all the time points representing LPS treatment have their respective controls which, for each sample, are pooled exactly from the same animals to eliminate any genetic background influence.

By using blockers for K\textsubscript{ATP} (glibenclamide) and BK (iberiotoxin), LPS-induced changes in vascular reactivity to ET-1 were not affected in either the pulmonary artery or the aorta. These results are similar to previous ex vivo organ bath studies, where glibenclamide had no effect on vascular hyporeactivity (Wu et al., 1995; Taguchi et al., 1996) or even further reduced contractions (Sorrentino et al., 1999) and to an in vivo model where both glibenclamide and iberiotoxin did not protect against LPS-induced mortality in mice (Cauwels & Brouckaert, 2008). In addition,
since K^+ channels activation causes hyperpolarization and closing of VOCCs, the absence of effects with either K^+ channels blockers or VOCCs blockers confirms that both K^+ channels and VOCCs are not involved in LPS-induced hyporeactivity to ET-1 in the aorta.

No previous studies are available where the role of different proteins involved in Ca^{2+}-sensitization was assessed in vascular hyporeactivity changes in animal models of sepsis. Therefore, the present results demonstrating the absence of significant changes between control and LPS-treated aortic rings in the protein expression levels of PKC or the phosphorylation levels of ROKα, CPI-17 or MYPT1, are an important evidence suggesting that Ca^{2+}-sensitization is not the primarily mechanism responsible for LPS-induced hyporeactivity to ET-1. These observations suggest that changes in Ca^{2+} mobilization or Ca^{2+} entry are more important.

Previous studies have mainly examined LPS-induced changes in depolarizing KCl (40-100 mM)-stimulated Ca^{2+}-entry via VOCCs. Increasing extracellular Ca^{2+} up to 30 mM reverses the diminished vascular reactivity to KCl in the aorta from septic rats (Wakabayashi et al., 1987; Biguad et al., 1990), an effect attributed to the impairment of either Ca^{2+} sensitization (Wakabayashi et al., 1987) or Ca^{2+} influx (Biguad et al., 1990), although specific mechanisms were not identified. The present results using the VOCCs blockers nifedipine or diltiazem suggest that VOCCs-dependent Ca^{2+}-entry is not responsible for LPS-induced hyporeactivity to ET-1. Furthermore, the difference in the sensitivity to external Ca^{2+} in the aorta preconstricted with ET-1 in the presence of nifedipine suggests that LPS impairs non-VOCCs Ca^{2+}-entry. Similarly, rat aorta from endotoxic rats display reduced sensitivity to Ca^{2+} in high K^+ depolarizing medium (Gray et al., 1990; Ho et al., 1996) and nitrendipine is not able to inhibit vascular hyporeactivity to phenylephrine in septic rat aorta (Biguad et al., 1990). Conversely, pre-administration of verapamil and nifedipine (Sirmagul et al., 2006) or nifedipine (Wu et al., 1999) is able to prevent hypotension *in vivo* in endotoxin-shocked rats. Interestingly, amlodipine prevents LPS-induced hypotension *in vivo* but not *in vitro* (Salomone et al., 1998), suggesting that results obtained with VOCCs modulators *in vivo* may be affected by other factors inside the body, such as metabolism, interaction with other mediators/cells and the presence of neuronal factors.
To study LPS-induced changes in Ca2+ influx further, changes in [Ca2+], levels in isolated aortic VSMCs were examined. The basal [Ca2+], levels were slightly higher in LPS-treated aortic VSMCs compared to control, a result consistent with previous studies using rat aorta (Song \textit{et al.}, 1993) and rat mesenteric arteries (Martinez \textit{et al.}, 1996). Since removal of external Ca2+ abolishes this difference in basal [Ca2+], levels, it is unlikely to result from an impairment of [Ca2+], storage (Hotchkiss & Karl, 1996; Farmer \textit{et al.}, 2003), but probably from enhanced Ca2+ influx through VOCCs (Wilkinson \textit{et al.}, 1996), or other Ca2+ channels.

The ET-1-induced biphasic increase in Ca2+ levels, comprising transient and sustained components, has been previously shown (Jones \textit{et al.}, 1999; Zhang \textit{et al.}, 1999). The transient phase of [Ca2+], increase was not affected by external Ca2+ removal, suggesting that it is mainly due to intracellular release of Ca2+ as previously demonstrated (Zhang \textit{et al.}, 1999; Ko \textit{et al.}, 2005). Since LPS treatment had no effect on the transient phase increase in [Ca2+], it is unlikely that Ca2+-mobilization from intracellular stores was affected under the present experimental conditions. However, the ET-1-induced sustained phase [Ca2+], increase was significantly reduced in LPS-treated aortas. This difference was abolished by removal of external Ca2+, suggesting that it is mediated by voltage-independent Ca2+ influx. Similar differences were observed in response to the addition of external Ca2+ in the presence of ET-1 and the lack of response to diltiazem confirms this conclusion. The complete inhibition of the difference in the sustained level of [Ca2+], by SKF-96365, an inhibitor of both ROCCs and SOCCs (Merritt \textit{et al.}, 1990; Zhang \textit{et al.}, 1999), indicates that LPS impairs Ca2+ influx through voltage-independent Ca2+ channels. Since Ca2+ mobilization was not affected by LPS, it is likely that ROCCs more than SOCCs are involved.

It should be noted that U46619 did not show hyporeactivity after LPS-treatment in contrast to ET-1, phenylephrine and KCl. U46619-mediated contraction of rat aortic rings through TP receptors was not affected by external Ca2+ removal (Dorn & Becker, 1993). In addition, U46619 induces RhoA activation higher than ET-1 and norepinephrine in rabbit aortic smooth muscle (Sakurada \textit{et al.}, 2001). Therefore, U46619 resistance to LPS effects may be due its different mechanism of contraction, which depends on internal Ca2+ mobilization and Ca2+ sensitization more than on external Ca2+.
5.16 Summary and conclusions

In this chapter, LPS-induced changes in ET-1 receptor expression, Ca\(^{2+}\)-entry pathways, [Ca\(^{2+}\)]\(_i\) and Ca\(^{2+}\)-sensitization were examined in the pulmonary artery and aorta. The main findings are:

1- mRNA expression levels of ET-1, ET\(_A\) and ET\(_B\) are not affected by LPS in either vessel.

2- LPS-induced aortic hyporeactivity to ET-1 is dependent on external Ca\(^{2+}\) influx through voltage-independent Ca\(^{2+}\) channels.

3- Neither K\(_{ATP}\) nor BK have a major role in LPS-induced vascular effects.

4- The major proteins involved in Ca\(^{2+}\) sensitization, including ROK\(_\alpha\), PKC, MYPT1 and CPI-17, are not affected by LPS treatment in either vessel.

5- LPS impairs ET-1-induced changes in [Ca\(^{2+}\)]\(_i\) in aortic VSMCs by impairing Ca\(^{2+}\) influx mainly through ROCCs, although SOCCs could also be involved.

6- Inhibition of protein synthesis abolished LPS-induced aortic hypocontractility to ET-1

In conclusion, the mechanism of LPS-induced aortic hyporeactivity to ET-1 depends on external Ca\(^{2+}\) influx through non-VOCCs, but not on ET-1 receptor expression or Ca\(^{2+}\) sensitization. The effect of LPS on the non-VOCCs Ca\(^{2+}\) influx depends on protein synthesis. Therefore, Ca\(^{2+}\) homeostasis could be important in controlling systemic vasomotor complications in sepsis.
Chapter 6
Final Discussion & Conclusions
Chapter 6

Inflammation has incompletely characterized effects on cardiopulmonary vascular reactivity. One of the major diseases involving inflammation is sepsis, a complex dysregulation of inflammation arising when the host is unable to contain an infection successfully. Sepsis is associated with two main vasomotor complications, septic shock and pulmonary hypertension (Parsons et al., 1989; Manthous et al., 1993; Lorente et al., 1993), suggesting that systemic and pulmonary vasculature respond differentially to inflammation.

The main aim of this study was to examine the molecular mechanisms involved in cardiopulmonary vascular reactivity changes induced during inflammation. By using LPS as a powerful inflammatory stimulus, the present study established a well-controlled *in vitro* model to study changes in vascular reactivity that allowed identification of the possible vasoactive mediators and the molecular mechanisms impaired by LPS in vascular tissues.

6.1 The model

The vascular effects of sepsis can be simulated by the administration of the bacterial endotoxin LPS, both in humans (Suffredini et al., 1989) and in animals (Ruetten et al., 1996; Peters & Lewis, 1996; Gardiner et al., 1996b). The effect of endotoxemia on the vasculature has been studied by many different groups, using different models of *in vivo*, *in vitro* and *ex vivo* endotoxemia. However, the results are highly variable. Even in the same model, there is variability in LPS-induced changes in vascular reactivity between different blood vessels and towards different vasoconstrictors (Piepot et al., 2002; Farmer et al., 2003). This suggests that the type of blood vessel, mechanism of action of the vasoactive agent and the experimental conditions all affect the vascular reactivity observed in endotoxemic models.

The *in vivo* and *ex vivo* models, in contrast to *in vitro* models, represent real pathological conditions, but are difficult to control due to multiple interactions. The *in vitro* organ culture has been shown to preserve tissue structure and contractility (Adner et al., 1998; Ozaki & Karaki, 2002; Guibert et al., 2005), in contrast with *in*
vitro cultures of VSMCs, and its experimental conditions can be easily controlled. Therefore, the present study used an organ culture method as an endotoxemic model to investigate the effect of inflammation on vascular reactivity.

In the present model, the effect of in vitro incubation with LPS was examined in the pulmonary artery and the aorta, to represent pulmonary and systemic circulations respectively, under similar experimental conditions. The present study showed that LPS selectively induced vascular hyporeactivity to different vasoconstrictors in rat aorta but not in the pulmonary artery, similar to real in vivo observations in endotoxemia and sepsis. This aortic hyporeactivity was not due to organ culturing per se and was not affected by changing the LPS type. Therefore, this organ culture model is suitable to study LPS-induced changes in vascular reactivity and can be easily controlled to study the molecular mechanisms involved.

It should be noted that most in vivo and ex vivo studies used large bolus injection of LPS, with a few studies using continuous infusion of LPS (Guc et al., 1990; Farmer et al., 2003). This high single LPS bolus models are different from human infection where the bacterial toxins are continuously present in blood. In addition, high single LPS dose can cause a burst of inflammatory mediators such as cytokines, which may lead to altered results. The in vitro models, such as the present one, use LPS concentrations much higher than levels measured in clinical sepsis, which may be considered as a drawback. In addition, the role of circulating cells and other in vivo factors were not studied here.

6.2 The vasoactive mediators

Several mediators have been suggested to play a major role in sepsis-induced vascular complications, including NO, derivatives of COX, ROS and vasoconstrictors such as catecholamines, ET-1 and AngII. The present study focused on ET-1 and NO as major mediators that could be involved in vascular responses to LPS. Overproduction of NO, the major vasodilator, is suggested to be the responsible cause of vascular hyporeactivity in a large number of studies (Szabo et al., 1995; Feihl et al., 2001; Lopez et al., 2004). Plasma levels of ET-1, the most powerful vasoconstrictor at present, are elevated in sepsis and its level correlates with the
Chapter 6-Final Discussion & Conclusions

severity of illness (Pittet et al., 1991; Piechota et al., 2007). Results with different blockers of NO pathway are conflicting and sometimes detrimental, while ET-1 antagonism attenuates pulmonary hypertension in endotoxic shock (Wanecek et al., 1999; Kuklin et al., 2004).

Interestingly, NO was increased in both the pulmonary artery and the aorta in the present study, but vascular responses to ET-1 were impaired only in the aorta, raising a doubt about the role of NO in this model. Moreover, inhibition of iNOS was unable to reverse aortic hyporeactivity, but inhibition of sGC prevented this hyporeactivity. These results suggest that LPS-induced aortic hyporeactivity to ET-1 is largely mediated by NO-independent activation of sGC. The pulmonary artery did not show hyporeactivity to ET-1 because LPS induced a desensitization of the sGC/cGMP-dependent pathway by decreasing protein expression levels of sGCβ1, and hence sGC activity, and increasing PDE5 activity. Importantly, previous studies examining sGC/cGMP pathway in sepsis examined whole lung tissue or cultured pulmonary VSMCs, but not isolated pulmonary artery, which may be more relevant and specific.

Although endothelium removal and COX or ROS inhibition were unable to prevent LPS-induced aortic hyporeactivity to ET-1, this does not exclude their role \textit{in vivo}. In addition, the complexity of LPS action could involve other mediators not studied in the present work.

\textbf{6.3 The mechanisms}

Since LPS can induce vascular hyporeactivity \textit{in vitro} to different vasoconstrictors, which is independent of LPS type, and also in vessels removed from LPS-treated animals, the defect in the vascular contractility is intrinsic to the vasculature. The mechanisms involved in VSM contraction is therefore affected by LPS, either directly or through mediators released by LPS.

Several mechanisms could be involved in LPS-induced vascular hyporeactivity, including changes in receptor expression, Ca2+-entry pathways, [Ca2+], and
Ca2+-sensitization, in addition to membrane hyperpolarization by K+ channel opening, mainly the BK and K\textsubscript{ATP} channels.

Only a limited number of studies have examined the effect of LPS on these mechanisms. Using different blockers for K\textsubscript{ATP} and BK produced conflicting results in previous studies, similar to the case with NO inhibitors. The present results with BK and K\textsubscript{ATP} channels blockers show that K+ channels may not play a major role in this model. Similar to the endothelium, COX and ROS, this does not exclude the role of K+ channels \textit{in vivo}.

LPS treatment in the present study had no significant effect on ET\textsubscript{A} or ET\textsubscript{B} receptor mRNA levels, contrary to most studies showing that ET\textsubscript{A} is decreased while ET\textsubscript{B} is increased. It should be mentioned that no systematic study has evaluated ET-1 receptor expression in intact arteries in endotoxemia, which make the present results more specific than examining the whole organ like the heart or the lung. In addition, using different animals for control and LPS-treated groups can influence the outcome results due to the difference in genetic background. In contrast, all the time points in the present model representing LPS treatment have their respective controls which, for each sample, are pooled exactly from the same animals to eliminate any genetic background influence.

The exact role of Ca2+ homeostasis in LPS-induced vascular hyporeactivity is unknown. No previous studies examined the role of Ca2+-entry pathways, [Ca2+], and Ca2+-sensitization in LPS-induced vascular hyporeactivity in detail. The present results show that LPS impairs ET-1-induced Ca2+ influx without affecting different proteins involved in Ca2+-sensitization (PKC, ROK\textalpha, CPI-17 or MYPT1) in the aorta. Previous studies have mainly examined LPS-induced changes in Ca2+-entry via VOCCs stimulated by depolarizing KCl. The present study shows that LPS impairs ET-1-induced Ca2+ influx through voltage-independent Ca2+ channels, which may include SOCCs and ROCCs. Since Ca2+ mobilization was not affected by LPS, it is likely that ROCCs more than SOCCs are involved. These effects of LPS are dependent on protein synthesis. These results show the importance of Ca2+ homeostasis in LPS-induced vascular hyporeactivity. Figure 6.1 represents a simple scheme to highlight the findings of this study.
Figure 6.1 Simple scheme highlighting the findings of this study. [Ca$^{2+}$]$_i$, intracellular Ca$^{2+}$; NO, LPS, lipopolysaccharide; nitric oxide; PDE5, phosphodiesterase 5; pMLC$_{20}$, 20 kD phospho-myosin light chain; ROCCs, receptor-operated Ca$^{2+}$ channels; SOCCs, store-operated Ca$^{2+}$ channels; sGCβ_1, soluble guanylyl cyclase β_1.
6.4 Final conclusions

Inflammation can cause either vasoconstriction or vasodilation depending on the type of vascular tissue, vasoconstrictor and experimental conditions. The powerful inflammatory stimulus LPS causes selective aortic hypocontractility to different vasoconstrictors without affecting the pulmonary artery responses. In the aorta, LPS-induced hypocontractility to ET-1 may be due to NO-independent activation of sGC. In addition, LPS in the aorta may impair external Ca\(^{2+}\) influx through non-VOCCs, but not ET-1 receptors expression or Ca\(^{2+}\) sensitization, and these effects depend on protein synthesis. In the pulmonary artery, LPS does not affect pulmonary artery responses to different vasoconstrictors, since it causes desensitization of the sGC/cGMP pathway by decreasing protein expression levels of sGC\(\beta_1\), and hence sGC activity, and increasing PDE5 activity. In addition, LPS has no effect on ET-1 receptors expression or external Ca\(^{2+}\) influx induced by ET-1 in the pulmonary artery.

Therefore, it is likely that both Ca\(^{2+}\) homeostasis and the sGC/cGMP pathway play important roles in vasomotor complications in sepsis. sGC and/or PDE5-selective inhibitors, together with manipulating VSMC [Ca\(^{2+}\)\textsubscript{i}], could be important in controlling systemic and pulmonary vasomotor complications in sepsis.

6.5 Future work

Next steps may include determination of the nature of the NO-independent sGC activator stimulated by LPS, the mechanism by which LPS impairs PDE5 activity in pulmonary vessels and the type of Ca\(^{2+}\) channels involved in LPS actions. The mechanisms investigated in this study are related mainly to ET-1, other vasoconstricors can be investigated as well. The reproducibility of these results can be tested using \textit{ex vivo} and then \textit{in vivo} models. This could detect the applicability of the suggested pathways, such as sGC and/or PDE5 inhibitors, as therapeutic targets in sepsis.
References

Appendix