Research

Energy Minimization of Single-Walled Titanium Oxide Nanotubles


Reference:

Hart, J. N., Parker, S. C. and Lapkin, A. A., 2009. Energy Minimization of Single-Walled Titanium Oxide Nanotubles. ACS Nano, 3 (11), pp. 3401-3412.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

http://dx.doi.org/10.1021/nn900723f

Abstract

Different crystal structures have been proposed as a basis for titanium oxide nanotubes. We have used atomistic simulation techniques to calculate the relative stability of nanotubes with these different crystal structures, Our approach is to use energy minimization, where the total interaction energy is calculated with interatomic potentials based on the Born model of solids. The results reveal nanotubes with the trititanate structure to be the most stable (at unit activity for water). Indeed, nanotubes with the trititanate structure were found to be thermodynamically more favorable than bulk trititanate for nanotube diameters greater than similar to 8 nm. However, the formation of cross-linking bonds between layers of the trititanate structure occurred frequently; this problem was eliminated by replacing two out of three Ti4+ ions with Ti3+ ions, although this resulted in a higher energy. Of the structures that do not contain hydrogen, chiral nanotubes made from (101) sheets of anatase are the lowest in energy, suggesting that this is the most likely structure for nanotubes synthesized at low water chemical potential. In general, the stability of the nanotubes increased as the nanotube diameter increased.

Details

Item Type Articles
CreatorsHart, J. N., Parker, S. C. and Lapkin, A. A.
DOI10.1021/nn900723f
DepartmentsFaculty of Engineering & Design > Chemical Engineering
Faculty of Science > Chemistry
RefereedYes
StatusPublished
ID Code17280

Export

Actions (login required)

View Item