Research

Reduction in the ionospheric error for a single-frequency GPS timing solution using tomography


Reference:

Rose, J. A. R., Allain, D. J. and Mitchell, C. N., 2009. Reduction in the ionospheric error for a single-frequency GPS timing solution using tomography. Annals of Geophysics, 52 (5), pp. 469-486.

This is the latest version of this item.

Related documents:

[img]
Preview
PDF (published paper) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (3361kB) | Preview

    Official URL:

    http://dx.doi.org/10.4401/ag-4604

    Related URLs:

    Abstract

    Single-frequency Global Positioning System (GPS) receivers do not accurately compensate for the ionospheric delay imposed upon a GPS signal. They rely upon models to compensate for the ionosphere. This delay compensation can be improved by measuring it directly with a dual-frequency receiver, or by monitoring the ionosphere using real-time maps. This investigation uses a 4D tomographic algorithm, Multi Instrument Data Analysis System (MIDAS), to correct for the ionospheric delay and compares the results to existing single and dual-frequency techniques. Maps of the ionospheric electron density, across Europe, are produced by using data collected from a fixed network of dual-frequency GPS receivers. Single-frequency pseudorange observations are corrected by using the maps to find the excess propagation delay on the GPS L1 signals. Days during the solar maximum year 2002 and the October 2003 storm have been chosen to display results when the ionospheric delays are large and variable. Results that improve upon the use of existing ionospheric models are achieved by applying MIDAS to fixed and mobile single-frequency GPS timing solutions. The approach offers the potential for corrections to be broadcast over a local region, or provided via the internet and allows timing accuracies to within 10 ns to be achieved.

    Details

    Item Type Articles
    CreatorsRose, J. A. R., Allain, D. J. and Mitchell, C. N.
    DOI10.4401/ag-4604
    Related URLs
    URLURL Type
    http://dx.doi.org/10.4401/ag-4604Free Full-text
    DepartmentsFaculty of Engineering & Design > Electronic & Electrical Engineering
    Publisher StatementAnnalsGeophysics_2009_52_5.pdf: This work is licensed under a Creative Commons Attribution 3.0 License.
    RefereedYes
    StatusPublished
    ID Code17410

    Export

    Available Versions of this Item

    Actions (login required)

    View Item

    Document Downloads

    More statistics for this item...