In vitro optimization of Dexamethasone Phosphate delivery by iontophoresis


Sylvestre, J. -P., Guy, R. H. and Delgado-Charro, M. B., 2008. In vitro optimization of Dexamethasone Phosphate delivery by iontophoresis. Physical Therapy, 88 (10), pp. 1177-1185.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:


Background and Purpose. This study was designed to evaluate the effects of competing ions and electroosmosis on the transdermal iontophoresis of dexamethasone phosphate (Dex-Phos) and to identify the optimal conditions for its delivery. Methods. The experiments were performed using pig skin, in side-by-side diffusion cells (0.78 cm2), passing a constant current of 0.3 mA via Ag-AgCl electrodes. Dex-Phos transport was quantified for donor solutions (anodal and cathodal) containing different drug concentrations, with and without background electrolyte. Electrotransport of co-ion, citrate, and counterions Na and K also was quantified. The contribution of electroosmosis was evaluated by measuring the transport of the neutral marker (mannitol). Results. Electromigration was the dominant mechanism of drug iontophoresis, and reduction in electroosmotic flow directed against the cathodic delivery of Dex-Phos did not improve drug delivery. The Dex-Phos flux from the cathode was found to be optimal (transport number of 0.012) when background electrolyte was excluded from the formulation. In this case, transport of the drug is limited principally by the competition with counterions (mainly Na with a transport number of 0.8) and the mobility of the drug in the membrane. Discussion and Conclusion. Dex-Phos must be delivered from the cathode and formulated rationally, excluding mobile co-anions, to achieve optimal iontophoretic delivery.


Item Type Articles
CreatorsSylvestre, J. -P., Guy, R. H. and Delgado-Charro, M. B.
DepartmentsFaculty of Science > Pharmacy & Pharmacology
ID Code18015
Additional InformationFulltext of article freely available from PubMed Central via the weblink shown above.


Actions (login required)

View Item