Research

Genetic variation in pleiotropy: Differential epistasis as a source of variation in the allometric relationship between long bone lengths and body weight


Reference:

Pavlicev, M., Kenney-Hunt, J. P., Norgard, E. A., Roseman, C. C., Wolf, J. B. and Cheverud, J. M., 2007. Genetic variation in pleiotropy: Differential epistasis as a source of variation in the allometric relationship between long bone lengths and body weight. Evolution, 62 (1), pp. 199-213.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below.

Official URL:

http://dx.doi.org/10.1111/j.1558-5646.2007.00255.x

Abstract

Pleiotropy is an aspect of genetic architecture underlying the phenotypic covariance structure. The presence of genetic variation in pleiotropy is necessary for natural selection to shape patterns of covariation between traits. We examined the contribution of differential epistasis to variation in the intertrait relationship and the nature of this variation. Genetic variation in pleiotropy was revealed by mapping quantitative trait loci (QTLs) affecting the allometry of mouse limb and tail length relative to body weight in the mouse-inbred strain LG/J by SM/J intercross. These relationship QTLs (rQTLs) modify relationships between the traits affected by a common pleiotropic locus. We detected 11 rQTLs, mostly affecting allometry of multiple bones. We further identified epistatic interactions responsible for the observed allometric variation. Forty loci that interact epistatically with the detected rQTLs were identified. We demonstrate how these epistatic interactions differentially affect the body size variance and the covariance of traits with body size. We conclude that epistasis, by differentially affecting both the canalization and mean values of the traits of a pleiotropic domain, causes variation in the covariance structure. Variation in pleiotropy maintains evolvability of the genetic architecture, in particular the evolvability of its modular organization.

Details

Item Type Articles
CreatorsPavlicev, M., Kenney-Hunt, J. P., Norgard, E. A., Roseman, C. C., Wolf, J. B. and Cheverud, J. M.
DOI10.1111/j.1558-5646.2007.00255.x
DepartmentsFaculty of Science > Biology & Biochemistry
RefereedYes
StatusPublished
ID Code18347

Export

Actions (login required)

View Item