Research

Dietary flavonoid (-)epicatechin stimulates phosphatidylinositol 3-kinase-dependent anti-oxidant response element activity and up-regulates glutathione in cortical astrocytes


Reference:

Bahia, P. K., Rattray, M. and Williams, R. J., 2008. Dietary flavonoid (-)epicatechin stimulates phosphatidylinositol 3-kinase-dependent anti-oxidant response element activity and up-regulates glutathione in cortical astrocytes. Journal of Neurochemistry, 106 (5), pp. 2194-2204.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

http://dx.doi.org/10.1111/j.1471-4159.2008.05542.x

Abstract

Flavonoids are plant-derived polyphenolic compounds with neuroprotective properties. Recent work suggests that, in addition to acting as hydrogen donors, they activate protective signalling pathways. The anti-oxidant response element (ARE) promotes the expression of protective proteins including those required for glutathione synthesis (xCT cystine antiporter, gamma-glutamylcysteine synthetase and glutathione synthase). The use of a luciferase reporter (ARE-luc) assay showed that the dietary flavan-3-ol (-)epicatechin activates this pathway in primary cortical astrocytes but not neurones. We also examined the distribution of NF-E2-related factor-2 (Nrf2), a key transcription factor in ARE-mediated gene expression. We found, using immunocytochemistry, that Nrf2 accumulated in the nuclei of astrocytes following exposure to tert-butylhydroquinone (100 microM) and (-)epicatechin (100 nM). (-)Epicatechin signalling via Nrf2 was inhibited by wortmannin implicating a phosphatidylinositol 3-kinase-dependent pathway. Finally, (-)epicatechin increased glutathione levels in astrocytes consistent with an up-regulation of ARE-mediated gene expression. Together, this suggests that flavonoids may be cytoprotective by increasing anti-oxidant gene expression.

Details

Item Type Articles
CreatorsBahia, P. K., Rattray, M. and Williams, R. J.
DOI10.1111/j.1471-4159.2008.05542.x
DepartmentsFaculty of Science > Biology & Biochemistry
RefereedYes
StatusPublished
ID Code18382

Export

Actions (login required)

View Item