Research

Re-entrant corner behaviour of the PTT fluid with a solvent viscosity


Reference:

Evans, J. D., 2010. Re-entrant corner behaviour of the PTT fluid with a solvent viscosity. Journal of Non-Newtonian Fluid Mechanics, 165 (9-10), pp. 527-537.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

http://dx.doi.org/10.1016/j.jnnfm.2010.01.011

Abstract

The local asymptotic behaviour is given for planar re-entrant corner flows of Phan-Thien-Tanner fluids with a solvent viscosity. The solvent stress and Newtonian velocity field dominate in all regions, with the polymer stress being uniformly subdominant. At small radial distances r to the corner, the velocity field vanishes as O(r0) whilst the solvent stress behaviour is O(r-(1-0)). The polymer stress has the less singular behaviour O(r-4(1-0)/(5+0)), where 0[1/2,1) is the Newtonian flow-field eigenvalue. Stress boundary layers are needed at the walls for the polymer stress solution, which are of thickness O(r(4-0)/3). These results confirm the order of magnitude estimates previously obtained by Renardy [14], the alternative derivation given here using the method of matched asymptotic expansions. Further, we complete previous analysis by providing solutions (particularly for the polymer stresses) in the asymptotic regions that arise. These results breakdown in the limit of vanishing solvent viscosity as well as the Oldroyd-B model limit.

Details

Item Type Articles
CreatorsEvans, J. D.
DOI10.1016/j.jnnfm.2010.01.011
Uncontrolled Keywordssolvent viscosity, stress singularities, radial distance, order of magnitude estimate, phan-thien-tanner fluids, local asymptotic, velocity field, matched asymptotic expansion, stress behaviour, eigen-value, stress boundary layer, re-entrant corner, newtonians, oldroyd-b, polymer stress, corner flow
DepartmentsFaculty of Science > Mathematical Sciences
RefereedYes
StatusPublished
ID Code18695

Export

Actions (login required)

View Item