Localized states in a model of pattern formation in a vertically vibrated layer


Dawes, J. H. P. and Lilley, S., 2010. Localized states in a model of pattern formation in a vertically vibrated layer. SIAM Journal on Applied Dynamical Systems, 9 (1), pp. 238-260.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:


We consider a novel asymptotic limit of model equations proposed to describe the formation of localized states in a vertically vibrated layer of granular material or viscoelastic fluid. In physical terms, the asymptotic limit is motivated by experimental observations that localized states ("oscillons") arise when regions of weak excitation are nevertheless able to expel material rapidly enough to reach a balance with diffusion. Mathematically, the limit enables a novel weakly nonlinear analysis to be performed which allows the local depth of the granular layer to vary by O(1) amounts even when the pattern amplitude is small. The weakly nonlinear analysis and numerical computations provide a robust possible explanation of past experimental results.


Item Type Articles
CreatorsDawes, J. H. P.and Lilley, S.
Uncontrolled Keywordshomoclinic snaking,oscillon,pattern formation,bifurcation
DepartmentsFaculty of Science > Mathematical Sciences
Research CentresCentre for Mathematical Biology
ID Code18730


Actions (login required)

View Item