Research

Penalised regression splines: theory and application to medical research


Reference:

Marra, G. and Radice, R., 2010. Penalised regression splines: theory and application to medical research. Statistical Methods in Medical Research, 19 (2), pp. 107-125.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

http://dx.doi.org/10.1177/0962280208096688

Abstract

Generalised additive models (GAMs) allow for flexible functional dependence of a response variable on covariates. The aim of this article is to provide an accessible overview of GAMs based on the penalised likelihood approach with regression splines. In contrast to the classical backfitting, the penalised likelihood framework taken here provides researchers with an efficient computational method for automatic multiple smoothing parameter selection, which can determine the functional form of any relationship from the data. We illustrate through an example how the use of this methodology can help to gain insights into medical research.

Details

Item Type Articles
CreatorsMarra, G.and Radice, R.
DOI10.1177/0962280208096688
DepartmentsFaculty of Science > Mathematical Sciences
RefereedYes
StatusPublished
ID Code18811

Export

Actions (login required)

View Item