Research

Relativistic embedding method: the transfer matrix, complex band structures, transport, and surface calculations


Reference:

James, M. and Crampin, S., 2010. Relativistic embedding method: the transfer matrix, complex band structures, transport, and surface calculations. Physical Review B, 81 (15), 155439.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

http://dx.doi.org/10.1103/PhysRevB.81.155439

Abstract

We develop the relativistic embedding method for electronic-structure studies. An expression for the transfer matrix is derived in terms of the Green’s function of the Dirac equation, and we outline its evaluation within the relativistic embedding framework. The transfer matrix is used to find the complex band structure and an embedding potential that can replace a semi-infinite substrate in ab initio electronic-structure calculations. We show that this embedding potential may be used to define an operator that gives the current flowing across a surface; the eigenstates of which define channel functions for conductance studies, and which enable the derivation of a relativistic generalization of the known expression for the conductance across a nanodevice connected to leads. Finally, the application of the embedding potential in relativistic electronic-structure studies is illustrated using an electronlike basis to solve the surface-embedded Dirac equation for Au(111). A calculation with a single layer of atoms within the embedded volume correctly predicts the magnitude of the Rashba-type splitting of the zone center surface state.

Details

Item Type Articles
CreatorsJames, M.and Crampin, S.
DOI10.1103/PhysRevB.81.155439
DepartmentsFaculty of Science > Physics
RefereedYes
StatusPublished
ID Code18880

Export

Actions (login required)

View Item