Research

Adaptive control of rotor vibration using compact wavelets


Reference:

Cole, M. O. T., Keogh, P. S., Burrows, C. R. and Sahinkaya, M. N., 2006. Adaptive control of rotor vibration using compact wavelets. Journal of Vibration and Acoustics-Transactions of the Asme, 128 (5), pp. 653-665.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below.

Official URL:

http://dx.doi.org/10.1115/1.2203352

Abstract

This paper investigates the use of dyadic wavelets for the control of multifrequency rotor vibration. A scheme for real-time control of rotor vibration using an adaptive wavelet decomposition and reconstruction of time-varying signals is proposed. Quasi-periodic control forces are constructed adaptively in real-time to optimally cancel vibration produced by nonsmooth disturbance forces. Controller adaptive gains can be derived using a model-based synthesis or from system identification routines. The controller is implemented on a flexible rotor system incorporating two radial magnetic bearings, with standard proportional-integral-derivative control employed in a parallel feedback loop for rotor levitation. An experimental investigation of controller performance is used to deduce the best choice of wavelet basis for various operating conditions. These include steady synchronous forcing, step changes in synchronous forcing and multifrequency forcing produced by a rotor impact mechanism.

Details

Item Type Articles
CreatorsCole, M. O. T., Keogh, P. S., Burrows, C. R. and Sahinkaya, M. N.
DOI10.1115/1.2203352
DepartmentsFaculty of Engineering & Design > Mechanical Engineering
RefereedYes
StatusPublished
ID Code1905

Export

Actions (login required)

View Item