Research

Context-aware fusion: A case study on fusion of gait and face for human identification in video


Reference:

Geng, X., Smith-Miles, K., Wang, L., Li, M. and Wu, Q., 2010. Context-aware fusion: A case study on fusion of gait and face for human identification in video. Pattern Recognition, 43 (10), pp. 3660-3673.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

http://dx.doi.org/10.1016/j.patcog.2010.04.012

Abstract

Most work on multi-biometric fusion is based on static fusion rules. One prominent limitation of static fusion is that it cannot respond to the changes of the environment or the individual users. This paper proposes context-aware multi-biometric fusion, which can dynamically adapt the fusion rules to the real-time context. As a typical application, the context-aware fusion of gait and face for human identification in video is investigated. Two significant context factors that may affect the relationship between gait and face in the fusion are considered, i.e., view angle and subject-to-camera distance. Fusion methods adaptable to these two factors based on either prior knowledge or machine learning are proposed and tested. Experimental results show that the context-aware fusion methods perform significantly better than not only the individual biometric traits, but also those widely adopted static fusion rules including SUM, PRODUCT, MIN, and MAX. Moreover, context-aware fusion based on machine learning shows superiority over that based on prior knowledge.

Details

Item Type Articles
CreatorsGeng, X., Smith-Miles, K., Wang, L., Li, M. and Wu, Q.
DOI10.1016/j.patcog.2010.04.012
DepartmentsFaculty of Science > Computer Science
RefereedYes
StatusPublished
ID Code19573

Export

Actions (login required)

View Item