Research

Towards nanomedicines: design protocols to assemble, visualize and test carbon nanotube probes for multi-modality biomedical imaging


Reference:

Pascu, S. I., Arrowsmith, R. L., Bayly, S. R., Brayshaw, S. and Hu, Z., 2010. Towards nanomedicines: design protocols to assemble, visualize and test carbon nanotube probes for multi-modality biomedical imaging. Philosophical Transactions of the Royal Society A - Mathematical Physical and Engineering Sciences, 368 (1924), pp. 3683-3712.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

http://dx.doi.org/10.1098/rsta.2010.0081

Abstract

Nanomedicine is an interdisciplinary field, still in its infancy, where an accurate scientific assessment of potential risks and benefits is urgently needed, as is the engagement of end users and the public in this facet of the nanotechnology debate. There is increasing interest in improving our understanding of the interactions between nanomaterials and living systems, with regard to both the underlying chemistry and the physics of effects on the nanoscale. Ultimately, such knowledge promises new vistas for designing the ‘smart’ medicines of the future, of which targeted personalized drugs are the holy grail. Imaging and therapeutic components, including metallic radioisotopes, semiconductor quantum dots and magnetic materials, may be used to construct ‘nanocarriers’ (by encapsulation or conjugation) by rapid and simple (covalent and supramolecular) chemistry. The biomedical functions of the resulting materials are as yet largely unexplored. Encapsulation in nanocarriers could achieve delivery of the reagents (imaging and therapeutic drugs) to the sites of action in the body, while minimizing systemic toxicity and enzymatic degradation. These functional systems have the potential to become a general solution in drug delivery. Here we review recent developments concerning the applications of nanoparticles, including carbon nanotubes, as synthetic scaffolds for designing nanomedicines. This article will also focus on how understanding and design at the molecular level could help interdisciplinary teams develop research towards new diagnostics and therapeutics both in the short and the long term.

Details

Item Type Articles
CreatorsPascu, S. I., Arrowsmith, R. L., Bayly, S. R., Brayshaw, S. and Hu, Z.
DOI10.1098/rsta.2010.0081
DepartmentsFaculty of Science > Chemistry
RefereedYes
StatusPublished
ID Code19823
Additional InformationOne contribution of 18 to a Triennial Issue ‘Visions of the future for the Royal Society’s 350th anniversary year’.

Export

Actions (login required)

View Item