Exponentials and motions in geometric algebra


Simpson, L. and Mullineux, G., 2009. Exponentials and motions in geometric algebra. In: Skala, V. and Hildenbrand, D., eds. GraVisMa 2009: Workshop Proceedings. Plzen, CZ: Vaclav Skala/ University of West Bohemia, pp. 9-16.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below.

Official URL:

Related URLs:


The use of geometric algebra to define and manipulate rigid-body motions is investigated. An algebra with four basis elements of grade 1 is used in which the square of one of these elements is regarded as being infinite. This gives a representation of projective space and allows rotations and translations to be defined exactly. By smoothly interpolating between such transforms, smooth motions can be created using techniques such as spherical linear interpolation (Slerp). This requires the ability to handle the exponential function within the algebra. A closed form expression for the exponential is derived in the general case when the square of the special basis element is any real number. Taking this to be infinite allows smooth motions to be created and some examples are presented.


Item Type Book Sections
CreatorsSimpson, L.and Mullineux, G.
EditorsSkala, V.and Hildenbrand, D.
Related URLs
URLURL Type!_2009_GraVisMa_proceedings-FINAL.pdfFree Full-text
DepartmentsFaculty of Engineering & Design > Mechanical Engineering
Research CentresInnovative Design & Manufacturing Research Centre (IdMRC)
ID Code20039


Actions (login required)

View Item