Perception of linear and nonlinear motion properties using a FACS validated 3D facial model


Cosker, D., Krumhuber, E. and Hilton, A., 2010. Perception of linear and nonlinear motion properties using a FACS validated 3D facial model. In: 7th Annual Symposium on Applied Perception in Graphics and Visualization, APGV 2010, July 23, 2010 - July 24, 2010, 2010-01-01. New York, U. S. A.: ACM, pp. 101-108.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

Related URLs:


In this paper we present the first Facial Action Coding System (FACS) valid model to be based on dynamic 3D scans of human faces for use in graphics and psychological research. The model consists of FACS Action Unit (AU) based parameters and has been independently validated by FACS experts. Using this model, we explore the perceptual differences between linear facial motions - represented by a linear blend shape approach - and real facial motions that have been synthesized through the 3D facial model. Through numerical measures and visualizations, we show that this latter type of motion is geometrically nonlinear in terms of its vertices. In experiments, we explore the perceptual benefits of nonlinear motion for different AUs. Our results are insightful for designers of animation systems both in the entertainment industry and in scientific research. They reveal a significant overall benefit to using captured nonlinear geometric vertex motion over linear blend shape motion. However, our findings suggest that not all motions need to be animated nonlinearly. The advantage may depend on the type of facial action being produced and the phase of the movement.


Item Type Conference or Workshop Items (UNSPECIFIED)
CreatorsCosker, D., Krumhuber, E. and Hilton, A.
Related URLs
DepartmentsFaculty of Science > Computer Science
ID Code20915


Actions (login required)

View Item