Research

A motion-compensated cone-beam CT using electrical impedance tomography imaging


Reference:

Pengpan, T., Smith, N. D., Qiu, W., Yao, A., Mitchell, C. N. and Soleimani, M., 2011. A motion-compensated cone-beam CT using electrical impedance tomography imaging. Physiological Measurement, 32 (1), pp. 19-34.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

http://dx.doi.org/10.1088/0967-3334/32/1/002

Abstract

Cone-beam CT (CBCT) is an imaging technique used in conjunction with radiation therapy. For example CBCT is used to verify the position of lung cancer tumours just prior to radiation treatment. The accuracy of the radiation treatment of thoracic and upper abdominal structures is heavily affected by respiratory movement. Such movement typically blurs the CBCT reconstruction and ideally should be removed. Hence motion-compensated CBCT has recently been researched for correcting image artefacts due to breathing motion. This paper presents a new dual-modality approach where CBCT is aided by using electrical impedance tomography (EIT) for motion compensation. EIT can generate images of contrasts in electrical properties. The main advantage of using EIT is its high temporal resolution. In this paper motion information is extracted from EIT images and incorporated directly in the CBCT reconstruction. In this study synthetic moving data are generated using simulated and experimental phantoms. The paper demonstrates that image blur, created as a result of motion, can be reduced through motion compensation with EIT.

Details

Item Type Articles
CreatorsPengpan, T., Smith, N. D., Qiu, W., Yao, A., Mitchell, C. N. and Soleimani, M.
DOI10.1088/0967-3334/32/1/002
DepartmentsFaculty of Engineering & Design > Electronic & Electrical Engineering
RefereedYes
StatusPublished
ID Code21162

Export

Actions (login required)

View Item