Research

Designs for an adaptive tuned vibration absorber with variable shape stiffness element


Reference:

Bonello, P., Brennan, M. J., Elliott, S. J., Vincent, J. F. V. and Jeronimidis, G., 2005. Designs for an adaptive tuned vibration absorber with variable shape stiffness element. Proceedings of the Royal Society of London Series A - Mathematical Physical and Engineering Sciences, 461 (2064), pp. 3955-3976.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below.

Abstract

An adaptive tuned vibration absorber (ATVA) with a smart variable stiffness element is capable of retuning itself in response to a time-varying excitation frequency., enabling effective vibration control over a range of frequencies. This paper discusses novel methods of achieving variable stiffness in an ATVA by changing shape, as inspired by biological paradigms. It is shown that considerable variation in the tuned frequency can be achieved by actuating a shape change, provided that this is within the limits of the actuator. A feasible design for such an ATVA is one in which the device offers low resistance to the required shape change actuation while not being restricted to low values of the effective stiffness of the vibration absorber. Three such original designs are identified: (i) A pinned-pinned arch beam with fixed profile of slight curvature and variable preload through an adjustable natural curvature; (ii) a vibration absorber with a stiffness element formed from parallel curved beams of adjustable curvature vibrating longitudinally; (iii) a vibration absorber with a variable geometry linkage as stiffness element. The experimental results from demonstrators based on two of these designs show good correlation with the theory.

Details

Item Type Articles
CreatorsBonello, P., Brennan, M. J., Elliott, S. J., Vincent, J. F. V. and Jeronimidis, G.
DOI10.1098/rspa.2005.1547
DepartmentsFaculty of Engineering & Design > Mechanical Engineering
RefereedYes
StatusPublished
ID Code2142
Additional InformationID number: ISI:000233425800015

Export

Actions (login required)

View Item