Research

An analogue sum and threshold neuron based on the quantum tunnelling amplification of electrical pulses


Reference:

Samardak, A., Nogaret, A., Taylor, S., Austin, J., Farrer, I. and Ritchie, D. A., 2008. An analogue sum and threshold neuron based on the quantum tunnelling amplification of electrical pulses. New Journal of Physics, 10 (8), 083010.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

http://dx.doi.org/10.1088/1367-2630/10/8/083010

Related URLs:

Abstract

We demonstrate a spatial neuron that sums and regenerates electrical pulses in real time. The neuron uses a monolithic web of micro-transmission lines to propagate electrical pulses to a 'soma' where they are regenerated via quantum tunnelling amplification. The gain of the neuron follows a sigmoid curve similar to the one that controls the firing of real neurons. We report on the dependence of the regeneration threshold on bias parameters and obtain a good fit of the measured threshold by computing the stability diagram of the soma. The neuron is shown to regenerate coincident pulses with a timing sensitivity of 10 μs compared to milliseconds for real neurons. The present design demonstrates that the physics underpinning analogue computation in biological neurons has an equivalent in modern semiconductor structures.

Details

Item Type Articles
CreatorsSamardak, A., Nogaret, A., Taylor, S., Austin, J., Farrer, I. and Ritchie, D. A.
DOI10.1088/1367-2630/10/8/083010
Related URLs
URLURL Type
http://dx.doi.org/10.1088/1367-2630/10/8/083010Free Full-text
DepartmentsFaculty of Science > Physics
RefereedYes
StatusPublished
ID Code21930

Export

Actions (login required)

View Item