Research

Intronic AT skew is a defendable proxy for germline transcription but does not predict crossing-over or protein evolution rates in Drosophila melanogaster


Reference:

Weber, C. C. and Hurst, L. D., 2010. Intronic AT skew is a defendable proxy for germline transcription but does not predict crossing-over or protein evolution rates in Drosophila melanogaster. Journal of Molecular Evolution, 71 (5-6), pp. 415-426.

Related documents:

[img]
Preview
PDF (Hurst_JME_2010_71_5-6_415.pdf) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (224kB) | Preview

    Official URL:

    http://dx.doi.org/10.1007/s00239-010-9395-2

    Abstract

    Recent evidence suggests that germline transcription may affect both protein evolutionary rates, possibly mediated by repair processes, and recombination rates, possibly mediated by chromatin and epigenetic modification. Here, we test these propositions in Drosophila melanogaster. The challenge for such analyses is to provide defendable measures of germline gene expression. Intronic AT skew is a good candidate measure as it is thought to be a consequence, at least in part, of transcription-coupled repair. Prior evidence suggests that intronic AT skew in D. melanogaster is not affected by proximity to intron extremities and differs between transcribed DNA and flanking sequence. We now also establish that intronic AT skew is a defendable proxy for germline expression as (a) it is more similar than expected by chance between introns of the same gene (which is not accounted for by physical proximity), (b) is correlated with male germline expression, and (c) is more pronounced in broadly expressed genes. Furthermore, (d) a trend for intronic skew to differ between 3' and 5' ends of genes is particular to broadly expressed genes. Finally, (e) controlling for physical distance, introns of proximate genes are most different in skew if they have different tissue specificity. We find that intronic AT skew, employed as a proxy for germline transcription, correlates neither with recombination rates nor with the rate of protein evolution. We conclude that there is no prima facie evidence that germline expression modulates recombination rates or monotonically affects protein evolution rates in D. melanogaster.

    Details

    Item Type Articles
    CreatorsWeber, C. C.and Hurst, L. D.
    DOI10.1007/s00239-010-9395-2
    Uncontrolled Keywordsgermline expression, recombination, drosophila melanogaster, intronic at skew, somatic gene expression, tissue specificity, nucleotide asymmetry
    DepartmentsFaculty of Science > Biology & Biochemistry
    Publisher StatementHurst_JME_2010_71_5-6_415.pdf: The original publication is available at www.springerlink.com; Hurst_JME_2010_71_5-6_415.doc: The original publication is available at www.springerlink.com
    RefereedNo
    StatusPublished
    ID Code22243

    Export

    Actions (login required)

    View Item

    Document Downloads

    More statistics for this item...