Research

Formation of CuSbS2 and CuSbSe2 thin films via chalcogenisation of Sb-Cu metal precursors


Reference:

Colombara, D., Peter, L. M., Rogers, K. D., Painter, J. D. and Roncallo, S., 2011. Formation of CuSbS2 and CuSbSe2 thin films via chalcogenisation of Sb-Cu metal precursors. Thin Solid Films, 519 (21), pp. 7438-7443.

Related documents:

[img]
Preview
PDF (Colombara_TSF_2011.pdf) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (3748kB) | Preview

    Official URL:

    http://dx.doi.org/10.1016/j.tsf.2011.01.140

    Abstract

    Due to the availability and low cost of the elements, the ternary Cu-Sb-S and Cu-Sb-Se semiconductor systems are being studied as sustainable alternative absorber materials to replace CuIn(Ga)(S,Se)2 in thin film photovoltaic applications. Simple evaporation of the metal precursors followed by annealing in a chalcogen environment has been employed in order to test the feasibility of converting stacked metallic layers into the desired compounds. Other samples have been produced from aqueous solutions by electrochemical methods that may be suitable for scale-up. It was found that the minimum temperature required for the complete conversion of the precursors into the ternary chalcogen is 350 C, while binary phase separation occurs at lower temperatures. The new materials have been characterised by structural, electrical and photoelectrochemical techniques in order to establish their potential as absorber layer materials for photovoltaic applications. The photoactive films consisting of CuSbS2 and CuSbSe2 exhibit band-gap energies of ~ 1.5 eV and ~ 1.2 eV respectively, fulfilling the Shockley-Queisser requirements for the efficient harvesting of the solar spectrum.

    Details

    Item Type Articles
    CreatorsColombara, D., Peter, L. M., Rogers, K. D., Painter, J. D. and Roncallo, S.
    DOI10.1016/j.tsf.2011.01.140
    Uncontrolled Keywordssemiconductor, chalcostibite, cusbs2, heterojunction, photovoltaics, cusbse2, band-gap, alloy electrodeposition
    DepartmentsFaculty of Science > Chemistry
    Publisher StatementColombara_TSF_2011.pdf: NOTICE: this is the author’s version of a work that was accepted for publication in Thin Solid Films. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Thin Solid Films, Volume 519, Issue 21, August 2011, DOI 10.1016/j.tsf.2011.01.140
    RefereedYes
    StatusPublished
    ID Code22788

    Export

    Actions (login required)

    View Item

    Document Downloads

    More statistics for this item...