Research

Fouling in crude oil preheat trains: a systematic solution to an old problem


Reference:

Macchietto, S., Hewitt, G. F., Coletti, F., Crittenden, B. D., Dugwell, D. R., Galindo, A., Jackson, G., Kandiyoti, R., Kazarian, S. G., Luckham, P. F., Matar, O. K., Millan-Agorio, M., Muller, E. A., Paterson, W., Pugh, S. J., Richardson, S. M. and Wilson, D. I., 2011. Fouling in crude oil preheat trains: a systematic solution to an old problem. Heat Transfer Engineering, 32 (3-4), pp. 197-215.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

http://dx.doi.org/10.1080/01457632.2010.495579

Abstract

A major cause of refinery energy inefficiency is fouling in preheat trains. This has been a most challenging problem for decades, due to limited fundamental understanding of its causes, deposition mechanisms, deposit composition, and impacts on design/operations. Current heat exchanger design methodologies mostly just allow for fouling, rather than fundamentally preventing it. To address this problem in a systematic way, a large-scale interdisciplinary research project, CROF (crude oil fouling), brought together leading experts from the University of Bath, University of Cambridge, and Imperial College London and, through IHS ESDU, industry. The research, coordinated in eight subprojects blending theory, experiments, and modeling work, tackles fouling issues across all scales, from molecular to the process unit to the overall heat exchanger network, in an integrated way. To make the outcomes of the project relevant and transferable to industry, the research team is working closely with experts from many world leading oil companies. The systematic approach of the CROF project is presented. Individual subprojects are outlined, together with how they work together. Initial results are presented, indicating that a quantum progress can be achieved from such a fundamental, integrated approach. Some preliminary indications with respect to impact on industrial practice are discussed.

Details

Item Type Articles
CreatorsMacchietto, S., Hewitt, G. F., Coletti, F., Crittenden, B. D., Dugwell, D. R., Galindo, A., Jackson, G., Kandiyoti, R., Kazarian, S. G., Luckham, P. F., Matar, O. K., Millan-Agorio, M., Muller, E. A., Paterson, W., Pugh, S. J., Richardson, S. M. and Wilson, D. I.
DOI10.1080/01457632.2010.495579
DepartmentsFaculty of Engineering & Design > Chemical Engineering
RefereedYes
StatusPublished
ID Code22885

Export

Actions (login required)

View Item