The use of ionospheric tomography and elevation masks to reduce the overall error in single-frequency GPS timing applications


Rose, J. A. R., Tong, J. R., Allain, D. J. and Mitchell, C. N., 2011. The use of ionospheric tomography and elevation masks to reduce the overall error in single-frequency GPS timing applications. Advances in Space Research, 47 (2), pp. 276-288.

Related documents:

[img] PDF (RRose_ASR_2011_47_2_276.pdf) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (3906kB)

    Official URL:

    Related URLs:


    Signals from Global Positioning System (GPS) satellites at the horizon or at low elevations are often excluded from a GPS solution because they experience considerable ionospheric delays and multipath effects. Their exclusion can degrade the overall satellite geometry for the calculations, resulting in greater errors; an effect known as the Dilution of Precision (DOP). In contrast, signals from high elevation satellites experience less ionospheric delays and multipath effects. The aim is to find a balance in the choice of elevation mask, to reduce the propagation delays and multipath whilst maintaining good satellite geometry, and to use tomography to correct for the ionosphere and thus improve single-frequency GPS timing accuracy. GPS data, collected from a global network of dual-frequency GPS receivers, have been used to produce four GPS timing solutions, each with a different ionospheric compensation technique. One solution uses a 4D tomographic algorithm, Multi-Instrument Data Analysis System (MIDAS), to compensate for the ionospheric delay. Maps of ionospheric electron density are produced and used to correct the single-frequency pseudorange observations. This method is compared to a dual-frequency solution and two other single-frequency solutions: one does not include any ionospheric compensation and the other uses the broadcast Klobuchar model. Data from the solar maximum year 2002 and October 2003 have been investigated to display results when the ionospheric delays are large and variable. The study focuses on Europe and results are produced for the chosen test site, VILL (Villafranca, Spain). The effects of excluding all of the GPS satellites below various elevation masks, ranging from 5 degrees to 40 degrees, on timing solutions for fixed (static) and mobile (moving) situations are presented. The greatest timing accuracies when using the fixed GPS receiver technique are obtained by using a 40 degrees mask, rather than a 5 degrees mask. The mobile GPS timing solutions are most accurate when satellites at lower elevations continue to be included: using a mask between 10 degrees and 20 degrees. MIDAS offers the most accurate and least variable single-frequency timing solution and accuracies to within 10 ns are achieved for fixed GPS receiver situations. Future improvements are anticipated by combining both GPS and Galileo data towards computing a timing solution.


    Item Type Articles
    CreatorsRose, J. A. R., Tong, J. R., Allain, D. J. and Mitchell, C. N.
    Related URLs
    URLURL Type
    Uncontrolled Keywordstomography,satellite elevation,ionosphere,gps,timing
    DepartmentsFaculty of Engineering & Design > Electronic & Electrical Engineering
    ID Code23014


    Actions (login required)

    View Item

    Document Downloads

    More statistics for this item...