Research

Transcriptional regulation of the beta-synuclein 5 '-promoter metal response element by metal transcription factor-1


Reference:

McHugh, P. C., Wright, J. A. and Brown, D. R., 2011. Transcriptional regulation of the beta-synuclein 5 '-promoter metal response element by metal transcription factor-1. PLoS ONE, 6 (2), e17354.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

http://dx.doi.org/10.1371/journal.pone.0017354

Abstract

The progression of many human neurodegenerative disorders is associated with an accumulation of alpha-synuclein. Alpha-synuclein belongs to the homologous synuclein family, which includes beta-synuclein. It has been proposed that beta-synuclein may be a natural regulator of alpha-synuclein. Therefore controlling beta-synuclein expression may control the accumulation of alpha-synuclein and ultimately prevent disease progression. The regulation of synucleins is poorly understood. We investigated the transcriptional regulation of beta-synuclein, with the aim of identifying molecules that differentially control beta-synuclein expression levels. To investigate transcriptional regulation of beta-synuclein, we used reporter gene assays and bioinformatics. We identified a region -1.1/-0.6 kb upstream of the beta-synuclein translational start site to be a key regulatory region of beta-synuclein 5'-promoter activity in human dopaminergic cells (SH-SY5Y). Within this key promoter region we identified a metal response element pertaining to a putative Metal Transcription Factor-1 (MTF1) binding site. We demonstrated that MTF-1 binds to this 5'-promoter region using EMSA analysis. Moreover, we showed that MTF-1 differentially regulates beta-synuclein promoter binding site, as well as beta-synuclein mRNA and protein expression. This effect of MTF-1 on expression was found to be specific to beta-synuclein when compared to alpha-synuclein. Understanding the regulation of synucleins and how they interact may point to molecular targets that could be manipulated for therapeutic benefit. In this study we showed that MTF-1 differentially controls the expression of beta-synuclein when compared to its homolog alpha-synuclein. This could potentially provide a novel targets or pathways for therapeutic intervention and/or treatment of synucleinopathies.

Details

Item Type Articles
CreatorsMcHugh, P. C., Wright, J. A. and Brown, D. R.
DOI10.1371/journal.pone.0017354
DepartmentsFaculty of Science > Biology & Biochemistry
RefereedYes
StatusPublished
ID Code23165

Export

Actions (login required)

View Item