Research

Electronic structure of In(2)O(3) and Sn-doped In(2)O(3) by hard x-ray photoemission spectroscopy


Reference:

Korber, C., Krishnakumar, V., Klein, A., Panaccione, G., Torelli, P., Walsh, A., Da Silva, J. L. F., Wei, S. H., Egdell, R. G. and Payne, D. J., 2010. Electronic structure of In(2)O(3) and Sn-doped In(2)O(3) by hard x-ray photoemission spectroscopy. Physical Review B, 81 (16), 165207.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

http://dx.doi.org/10.1103/PhysRevB.81.165207

Abstract

The valence and core levels of In(2)O(3) and Sn-doped In(2)O(3) have been studied by hard x-ray photoemission spectroscopy (hv = 6000 eV) and by conventional Al K alpha (hv = 1486.6 eV) x-ray photoemission spectroscopy. The experimental spectra are compared with density-functional theory calculations. It is shown that structure deriving from electronic levels with significant In or Sn 5s character is selectively enhanced under 6000 eV excitation. This allows us to infer that conduction band states in Sn-doped samples and states at the bottom of the valence band both contain a pronounced In 5s contribution. The In 3d core line measured at hv = 1486.6 eV for both undoped and Sn-doped In(2)O(3) display an asymmetric lineshape, and may be fitted with two components associated with screened and unscreened final states. The In 3d core line spectra excited at hv = 6000 eV for the Sn-doped samples display pronounced shoulders and demand a fit with two components. The In 3d core line spectrum for the undoped sample can also be fitted with two components, although the relative intensity of the component associated with the screened final state is low, compared to excitation at 1486.6 eV. These results are consistent with a high concentration of carriers confined close to the surface of nominally undoped In(2)O(3). This conclusion is in accord with the fact that a conduction band feature observed for undoped In(2)O(3) in Al K alpha x-ray photoemission is much weaker than expected in hard x-ray photoemission.

Details

Item Type Articles
CreatorsKorber, C., Krishnakumar, V., Klein, A., Panaccione, G., Torelli, P., Walsh, A., Da Silva, J. L. F., Wei, S. H., Egdell, R. G. and Payne, D. J.
DOI10.1103/PhysRevB.81.165207
Uncontrolled Keywordsphotoelectron angular-distribution, wave basis-set, surface, optical-properties, transparent conducting oxides, tin(iv) oxide, volpe project, total-energy calculations, parameters, indium-tin-oxide
DepartmentsFaculty of Science > Chemistry
RefereedYes
StatusPublished
ID Code23978

Export

Actions (login required)

View Item