Research

Electronic structure and phase stability of MgTe, ZnTe, CdTe, and their alloys in the B3, B4, and B8 structures


Reference:

Yang, J. H., Chen, S. Y., Yin, W. J., Gong, X. G., Walsh, A. and Wei, S. H., 2009. Electronic structure and phase stability of MgTe, ZnTe, CdTe, and their alloys in the B3, B4, and B8 structures. Physical Review B, 79 (24), 245202.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

http://dx.doi.org/10.1103/PhysRevB.79.245202

Abstract

The electronic structure and phase stability of MgTe, ZnTe, and CdTe were examined in the zinc-blende (B3), wurtzite (B4), and NiAs-type (B8) crystal structures using a first-principles method. Both the band-gap and valence-band maximum (VBM) deformation potentials of MgTe, ZnTe, and CdTe in the B3 structure were analyzed, revealing a less negative band-gap deformation potential from ZnTe to MgTe to CdTe, with a VBM deformation potential increase from CdTe to ZnTe to MgTe. The natural band offsets were calculated taking into account the core-level deformation. Ternary alloy formation was explored through application of the special quasirandom structure method. The B3 structure is found to be stable over all (Zn,Cd)Te compositions, as expected from the preferences of ZnTe and CdTe. However, the (Mg,Zn)Te alloy undergoes a B3 to B4 transition above 88% Mg concentration and a B4 to B8 transition above 95% Mg concentration. For (Mg,Cd)Te, a B3 to B4 transition is predicted above 80% Mg content and a B4 to B8 transition above 90% Mg concentration. Using the calculated band-gap bowing parameters, the B3 (Mg,Zn)Te [(Mg,Cd)Te] alloys are predicted to have accessible direct band gaps in the range 2.39(1.48)-3.25(3.02) eV, suitable for photovoltaic absorbers.

Details

Item Type Articles
CreatorsYang, J. H., Chen, S. Y., Yin, W. J., Gong, X. G., Walsh, A. and Wei, S. H.
DOI10.1103/PhysRevB.79.245202
Uncontrolled Keywordsenergy gap, magnesium, wave basis-set, valence bands, compounds, density functional theory, photovoltaic effects, films, crystal structure, total-energy calculations, zinc compounds, crystals, chemical trends, v, electronic structure, rule, semiconductors, band offsets, ii-vi, solar-cells, cadmium compounds, ii-vi semiconductors
DepartmentsFaculty of Science > Chemistry
RefereedYes
StatusPublished
ID Code23996

Export

Actions (login required)

View Item