Research

An ab initio study of reduction of V2O5 through the formation of oxygen vacancies and Li intercalation


Reference:

Scanlon, D. O., Walsh, A., Morgan, B. J. and Watson, G. W., 2008. An ab initio study of reduction of V2O5 through the formation of oxygen vacancies and Li intercalation. Journal of Physical Chemistry C, 112 (26), pp. 9903-9911.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

http://dx.doi.org/10.1021/jp711334f

Abstract

Two methods of reduction Of V2O5 have been investigated: oxygen vacancy formation and lithium intercalation. The electronic structure, geometry, and energetics of these reduced systems are examined. Oxygen vacancies in bulk alpha-V2O5 have been investigated by using gradient-corrected density functional theory (GGA) and density functional theory corrected for on-site Coulomb interactions in strongly correlated systems (GGA+U). The GGA calculation predicts a delocalized defect electronic state. This disagrees with experimental evidence, which indicates that oxygen vacancies produce a localized reduced vanadium state in the band gap. The DFT+U results for U = 4.0 eV are consistent with available UPS and XPS data, indicating strong localization on the vanadium atoms nearest the vacancy, and showing reduced V(IV) species. Intercalation of Li in V2O5, which has important potential applications in energy storage devices, is also reported at the GGA+U level, using the value of U obtained from the oxygen-deficient calculation, and localized reduction is demonstrated. These results are again in agreement with available UPS data and crystallographic data, indicating good transferability of this value of U among the systems of interest. Calculated lithium intercalation energies for both the alpha- and gamma-V2O5 phases are reported, and the structure and relative stability of the deintercalated gamma-V2O5 phase are also examined.

Details

Item Type Articles
CreatorsScanlon, D. O., Walsh, A., Morgan, B. J. and Watson, G. W.
DOI10.1021/jp711334f
Uncontrolled Keywordsband theory, ray-powder diffraction, density-functional theory, metal-oxides, oxidative dehydrogenation, thin-films, oxide surfaces, electronic-structure, vanadium pentoxide, low-index surfaces
DepartmentsFaculty of Science > Chemistry
RefereedYes
StatusPublished
ID Code24012

Export

Actions (login required)

View Item