Understanding in vivo blood cell migration Drosophila hemocytes lead the way


Evans, I. R. and Wood, W., 2011. Understanding in vivo blood cell migration Drosophila hemocytes lead the way. Fly, 5 (2), pp. 110-114.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

Related URLs:


Drosophila embryonic hemocytes have emerged as a potent system to analyse the roles of key regulators of the actin and microtubule cytoskeletons live and in an in vivo context (Table 1 and references therein). The relative ease with which live imaging can be used to visualize the invasive migrations of these highly motile macrophages and their responses to wound and chemoattractant signals make them a particularly appropriate and genetically tractable cell type to study in relation to pathological conditions such as cancer metastasis and inflammation. 1-3 In order to understand how signaling pathways are integrated for a coordinated response, a question with direct relevance to autoimmune dysfunction, we have sought to more fully characterize the inputs these cells receive in vivo over the course of their developmental dispersal. These studies have recently revealed that hemocyte migration is intimately associated with the development of the ventral nerve cord (VNC), a structure used by hemocytes to disperse over the embryo that itself requires this association for its correct morphogenesis. Crucially the VNC must separate from the epidermis to create a channel for hemocyte migration, revealing how constriction of extracellular space can be used to control cell migration in vivo.


Item Type Articles
CreatorsEvans, I. R.and Wood, W.
Related URLs
Uncontrolled Keywordsmigration,ventral nerve cord,development,slit,hemocyte,drosophila
DepartmentsFaculty of Science > Biology & Biochemistry
ID Code24199


Actions (login required)

View Item