Analysis of stochastic fluid queues driven by local-time processes


Konstantopoulos, T., Kyprianou, A. E., Salminen, P. and Sirviö, M., 2008. Analysis of stochastic fluid queues driven by local-time processes. Advances in Applied Probability, 40 (4), pp. 1072-1103.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

Related URLs:


We consider a stochastic fluid queue served by a constant rate server and driven by a process which is the local time of a reflected Lévy process. Such a stochastic system can be used as a model in a priority service system, especially when the time scales involved are fast. The input (local time) in our model is typically (but not necessarily) singular with respect to the Lebesgue measure, a situation which, in view of the nonsmooth or bursty nature of several types of Internet traffic, is nowadays quite realistic. We first discuss how to rigorously construct the (necessarily) unique stationary version of the system under some natural stability conditions. We then consider the distribution of performance steady-state characteristics, namely, the buffer content, the idle period, and the busy period. These derivations are much based on the fact that the inverse of the local time of a Markov process is a Lévy process (a subordinator), hence making the theory of Lévy processes applicable. Another important ingredient in our approach is the use of Palm calculus for stationary random point processes and measures.


Item Type Articles
CreatorsKonstantopoulos, T., Kyprianou, A. E., Salminen, P. and Sirviö, M.
Related URLs
DepartmentsFaculty of Science > Mathematical Sciences
ID Code24218


Actions (login required)

View Item