Research

Chiral discrimination of monosaccharides using a fluorescent molecular sensor


Reference:

James, T. D., Sandanayake, K. R. A. S. and Shinkai, S., 1995. Chiral discrimination of monosaccharides using a fluorescent molecular sensor. Nature, 374 (6520), pp. 345-347.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below.

Official URL:

http://dx.doi.org/10.1038/374345a0

Abstract

MEANS of distinguishing between enantiomers of a chiral molecule are of critical importance in many areas of analytical chemistry and biotechnology, particularly in drug design and synthesis. In particular, solution-based sensor systems capable of chiral recognition would be of tremendous pharmaceutical value. Here we report the chiral discrimination of D- and L -monosaccharides using a designed receptor molecule that acts as a sensor by virtue of its fluorescent response to binding of the guest species. Our receptor contains boronic acid groups that bind saccharides by covalent interactions; such receptor systems have been much studied previously1–6 for complexation of saccharides, and have an advantage over others based on hydrogen-bonding interactions7–11, for which polar protic solvents such as water can compete with guest binding. Our molecular sensor also incorporates a fluorescent naphthyl moiety; binding of each enantiomer of the monosaccharides alters the fluorescence intensity to differing degrees, enabling them to be distinguished. These water-soluble molecular sensors might form the basis of a quantitative and selective analytical method for saccharides.

Details

Item Type Articles
CreatorsJames, T. D., Sandanayake, K. R. A. S. and Shinkai, S.
DOI10.1038/374345a0
DepartmentsFaculty of Science > Chemistry
RefereedYes
StatusPublished
ID Code24724

Export

Actions (login required)

View Item