Research

Noise induced amplification of sub-threshold pulses in multi-thread excitable semiconductor ‘neurons’


Reference:

Samardak, A., Nogaret, A., Janson, N. B., Balanov, A. G., Farrer, I. and Ritchie, D. A., 2010. Noise induced amplification of sub-threshold pulses in multi-thread excitable semiconductor ‘neurons’. Physica E-Low-Dimensional Systems & Nanostructures, 42 (10), pp. 2853-2856.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

http://dx.doi.org/10.1016/j.physe.2009.12.017

Abstract

We report on the transmission of electrical pulses through a semiconductor structure which emulates biological neurons. The ‘neuron’ emits bursts of electrical spikes whose coherence we study as a function of the amplitude and frequency of a sine wave stimulus and noise. Noise is found to enhance the transmission of pulses below the firing threshold of the neuron. We demonstrate stochastic resonance when the power of the output signal passes through a maximum at an optimum noise value. Under appropriate conditions, we observe coherence resonance and stochastic synchronization. Data are quantitatively explained by modelling the FitzHugh–Nagumo equations derived from the electrical equivalent circuit of the soma. We have therefore demonstrated a physically realistic neuron structure that provides first principles feedback on mathematical models and that is well suited to building arborescent networks of pulsing neurons.

Details

Item Type Articles
CreatorsSamardak, A., Nogaret, A., Janson, N. B., Balanov, A. G., Farrer, I. and Ritchie, D. A.
DOI10.1016/j.physe.2009.12.017
DepartmentsFaculty of Science > Physics
RefereedYes
StatusPublished
ID Code24897
Additional Information18th International Conference on the Electronic Properties of Two-Dimensional Systems (EP2DS18)/14th International Conference on Modulated Semiconductor Structures (MSS14). Kobe, Japan. 19-24 July 2009.

Export

Actions (login required)

View Item