Coordination behavior and transformations of thienyl substituted diacetylenes upon coordination to \(\text{Os}_3\text{H}_2(\text{CO})_{10} \)

Simon K. Brayshaw,† Lionel P. Clarke,‡ Pertti Homanen,† Olivia F. Koentjoro,† John E. Warren‡ and Paul R. Raithby,†*

*Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK. Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. CCLRC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, UK.

Email: P.R.Raithby@bath.ac.uk

RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required according to the journal that you are submitting your paper to)

† University of Bath.
‡ University of Cambridge.
§ CCLRC Daresbury Laboratory.

Abstract: The reaction between 2- and 3-thienyl substituted 1,3-butadiynes and the electron deficient osmium cluster \(\text{Os}_3\text{H}_2(\text{CO})_{10} \) yields trinuclear coordination products, associated with transformations of the diacetylene ligands. Depending on the heteroaryl end groups, osmium clusters with both closed and
open Os-triangle core were formed. The reaction between Os₃H₂(CO)₁₀ and 1,4-bis(2-thienyl)butadiyne yielded [Os₃(μ-H)(CO)₁₀{(μ-η-(C₄H₃S)(C₈H₄S))}] (1) and [Os₃(μ-H)(CO)₁₀{(μ₂-η²-η'-η₁}-
(SC₇H₄)C(SC₄H₃)]) (2) whereas in the analogous case of 1,4-bis(3-thienyl)butadiyne the main coordination product was found to be [Os₃(μ-H)(CO)₁₀{(μ-η-(C₄H₃S)(C₈H₄S))}] (3). Compounds 1-3 were stable in air, but lost carbon monoxide upon prolonged heating. Thermal decarbonylation of 1 under N₂ yielded a mixture of [Os₃(μ-H)(CO)₉{(μ₃-η³-(C₄H₃S)(C₈H₄S))}] (4) and [Os₃(μ-H₂)(CO)₉{(μ₅-η⁵-η'-η₁-(C₄H₃S)(C₈H₄S))}] (5). Thermal decarbonylation of 2 yielded [Os₃(μ-H)(CO)₉{(μ₃-η³-(C₄H₃S)(C₈H₄S))}] (6), while thermal decarbonylation of 3 yielded [Os₃(μ-H)(CO)₉{(μ₃-η³-(C₄H₃S)(C₈H₄S))}] (7). A reaction involving 3 with CF₃COOH affords as the main cluster product the known cluster [Os₃(μ-H)(CO)₁₀(O₂CF₃)] (8) and, unusually, permits the isolation and characterisation of the novel organic molecule [(C₄H₃S)(C₈H₄S)(OCF₃)] (9) cleaved from the parent cluster. The structures of the new compounds were established by single crystal X-ray studies and spectroscopic methods, and

supported by density functional theory.

Introduction

The fundamental alkyl-cluster interactions have been extensively studied, particularly those of osmium and ruthenium carbonyl clusters.¹ Much of the current interest has emphasized the studies of poly-yne interactions, which offer great variety of coordination modes due to the extended carbon backbone, along with the opportunity to link small cluster units with a poly-yne ligand.² Thermolysis reactions between carbonyl clusters and a variety of functionalized poly-ynes can involve either metal-metal bond cleavage, alkyne bond activation, intramolecular cyclization or ligand coupling to give cluster products with varying nuclearity.²e,³

In reactions between functionalised diynes and osmium clusters such as Os₃H₂(CO)₁₀ and Os₃(CO)₁₀(NCMe)$_₂$, the cluster nuclearity is maintained, but changes in the cluster core geometry and ligand rearrangements are possible.⁴ The latter phenomenon has been studied in particular in the case of
hydrido clusters, where the hydride transfer from the cluster is likely to initiate ligand rearrangements. The nature of the terminal substituents of the diyne determines the result of the ligand rearrangement. Reactions of diyne with Os$_3$H$_2$(CO)$_{10}$ tend to afford cyclisation of the ligand \(^\text{4b,5}\) which is thought to proceed via an abstraction of a hydrogen atom attached to the β–carbon atom of the diyne which leads to the formation of a bond between the β–carbon atom and the third carbon of the $\text{C}2$–$\text{C}2$– diyne group.\(^\text{2a,b}\) In the case of HOH$_2$CC≡C≡CCH$_2$OH this process leads the formation of a cyclic product incorporating a furan ring,\(^\text{4a}\) while the ligand PhC≡C≡CPh gives an indenyl fragment as the rearrangement product.\(^\text{5}\) The cluster \([\text{Os}_3\text{H}((\text{CO})_{10}(\eta^1:\eta^1\text{-OC}_4\text{H}_2\text{CCH}_3))]\) has been shown to undergo an aldol condensation reaction with aromatic aldehydes.\(^\text{6}\) Similar cyclisations products have also been observed in the reaction of Os$_3$H$_2$(CO)$_{10}$ with other substituted diyne RC≡C≡CR’ (R=Ph, R’=CH$_2$NHPh; R=Ph, R’=CH$_2$NHCH$_2$Ph; R=CH$_2$NHPh; R=CH$_2$NMe$_2$).\(^\text{4b,7}\) Reactions involving Os$_3$H$_2$(CO)$_{10}$ and Me$_3$SiC≡C≡CSiMe$_3$ do not result in cyclisation products due to the 1,2- shift of the SiMe$_3$ stabilising the ethynyl ligand.\(^\text{8}\) Similarly, a 1,2-shift of one of the ferrocenyl groups along the butadiyne chain has been suggested to account for the products of the reaction of FcC≡C≡CFc with \([\text{Os}_3(\mu-\text{H})(\text{CO})_{10}(\mu-\eta^2\text{-NC}_5\text{H}_4)]\).\(^\text{9}\)

Hydrodesulphurisation (HDS) is the catalytic process by which the sulfur present in crude oil and petroleum distillates is removed which leads to a greener process via the reduction of SO$_2$ emission. Commercial heterogeneous HDS catalysts consist of metal sulfide crystallites on a support surface. However there is little understanding of the active site, or the chemical processes occurring. For this purpose carbonyl clusters and organosulfur compounds have been used as models in understanding the hydrosulphurisation adsorption and desulphurisation phenomena used in treatment of crude oil.\(^\text{10}\) Increased catalytic activity has been observed, particularly toward thiophenes, when late transition metals (group 8) are employed.\(^\text{10b}\)

In general, reactions between a late transition metal carbonyl cluster and an organosulfur compound such as a functionalised thiophene result in an insertion of a metal cluster fragment into a C-S bond,
along with desulfurisation of the heterocycle.10 In contrast, reactions between thiophenes, benzothiophene or thietane and a triosmium carbonyl cluster results in a C-H bond activation11 which occurs in preference to the C-S bond cleavage seen in reactions of thiophenes with ruthenium and ferrocene carbonyl clusters.12 Although C-S bond cleavage reactions have not been observed in reactions between thiophenes and triosmium carbonyl clusters, ring opening reactions occur in reactions between the activated osmium cluster, \(\text{Os}_3(\text{CO})_{10}(\text{NCMe})_2\), and selenophene and tellurophene.12b Because of the importance of HDS systems and the versatility of functionalised diynes it was considered valuable to investigate the reaction chemistry of thienyl butadiynes with osmium clusters.

Room temperature reaction of 1,4-bis(2-thienyl)butadiyne with the labile acetonitrile cluster \(\text{Os}_3(\text{CO})_{10}(\text{NCMe})_2\), yields coordination products where the thienyl functionalities remain intact, yielding a typical \(\mu_3-\eta^2\) coordination product and a novel two stranded linear osmium cluster.13 These results are echoed in the reaction between \(\text{Os}_3(\text{CO})_{10}(\text{NCMe})_2\) and 1,4-bis(ferrocenyl)-1,3-butadiyne, which gives an open triosmium cluster coordinated as a linear chain to the triple bonds of the ligand along with the expected coordination of the ligand as a triple bridge to a triangle of osmium.14 In comparison, the reaction of 1,8-bis-(ferrocenyl)-octatetrayne with \(\text{Os}_3\text{H}_2(\text{CO})_{10}\) has been shown to yield products involving trans-hydrogenation and cyclisations with the incorporation of \(\text{CO}\).3e

In this paper we extend the study of the reaction between osmium hydride, \(\text{Os}_3\text{H}_2(\text{CO})_{10}\) and diynes to include thienyl functionalised 1,3-butadiynes. These reactions give products in which the diyne unit has been transformed into a bicyclic ligand. Prolonged heating of these complexes resulted in carbonyl loss, and in one instance, reaction with trifluoroacetic acid enabled the isolation of the bicyclic organic compoud. In all cases, the complexes were characterised spectroscopically and by single crystal X-ray crystallography.

Results and Discussion

Synthesis of 1 and 2.

An equimolar reaction between \(\text{Os}_3\text{H}_2(\text{CO})_{10}\) and 1,4-bis(2-thienyl)butadiyne (L1) at room temperature affords \([\text{Os}_3(\mu-H)(\text{CO})_{10}\{\mu-\eta^2-(\text{C}_4\text{H}_3\text{S})(\text{C}_8\text{H}_4\text{S})\}]\) (1) as a major dark green product in 50%
yield, together with \([\text{Os}_3(\mu-H)(\text{CO})_{10}\{\mu_2-\eta^2-\eta^1-\eta^1(\text{SC}_7\text{H}_4)\text{C}(-\text{SC}_4\text{H}_3)\}]\) (2) and a number of other unidentified species (Scheme 1). Compound 1 is a dark green material, soluble in medium polarity organic solvents, and insoluble in hydrocarbons. 2 is an orange solid, at least partially soluble in all common organic solvents.

Scheme 1. Reaction of Os₃(H)₂(CO)₁₀ with dithienylbutadiynes

The room temperature \(^1\text{H}\) NMR spectrum of 1 showed aromatic resonances, a resonance downfield at δ 9.60 due to the protonated carbon of the cyclopentene group fused to the thiopyran and a single (integral 1H) hydride resonance at δ -14.82. At 220K the \(^{13}\text{C}\) NMR spectrum revealed ten aromatic resonances, along with one resonance at δ 63.07 due to the carbon bridging the Os-Os edge. There are a further six resonance in the \(^{13}\text{C}\) NMR spectrum associated with the terminal carboxyls of the cluster which, due to the symmetry plane in the molecule produces six chemically inequivalent environments resulting in a 2:2:2:2:1:1 signal ratio. At 298K, the \(^{13}\text{C}\) NMR spectrum was missing two carboxyls, suggesting an exchange process which either broadens these signals or renders some of the carboxyls
equivalent. The FAB-MS spectrum along with the IR spectrum obtained for 1 were unremarkable exhibiting the expected molecular ion and absorptions for terminal ν(CO), respectively.

The solid state molecular structure of 1 was determined by single-crystal X-ray diffraction from dark green crystals grown by slow evaporation of a dichloromethane solution (Figure 1, Table 1). The cluster consists of a closed 48 electron osmium triangle, where Os(1) is coordinated by four terminal CO ligands, while Os(2) and Os(3) are coordinated by three terminally bound carbonyls and bridged by a hydride and η1 alkylidene ligand. A novel cyclization of the bis(thiophene) ligand has been effected resulting in the formation of a cyclopentene group fused to the thiopyran by incorporation of the carbon atoms from the original alkyne unit. The six-membered ring is a product of ring expansion on one of the original thiophene ligands with bond lengths varying from 1.368(8) to 1.690(5) Å, with the carbon-sulfur bond lengths being approximately equal. The cyclised hydrocarbon is almost entirely planar and lies perpendicular to the Os(2)-Os(3) axis with the ligand anchored via an alkylidene interaction with almost equal distances of 2.230(5) and 2.235(5) Å for Os(2)-C(11) and Os(3)-C(11) respectively. In this coordination mode the newly formed cyclopentene moiety donates only two electrons via the alkylidene interaction from C(11). With a single electron donated from the bridging hydride the cluster would remain electron deficient, unless charge separation is taken into account, with a positive charge being associated with the S-centre of the six-membered ring of the cyclized hydrocarbon and an electron being transferred to the cluster. Zwitterionic cluster complexes have been reported previously.15
Figure 1. ORTEP plot (50% displacement ellipsoids) of the X-ray structure of 1.

To the best of our knowledge, the formation of this alkylidene complex is completely unprecedented in the field of osmium cluster chemistry. The ring expansion, via insertion of a carbon atom of the diyne backbone into the adjacent double bond of the thiophene ring, coupled with the ligand cyclization observed, leads to a very novel product. The mechanistic pathway as to its generation remains unclear but is related to the formation of a cyclic product incorporating a furan ring for the reaction between Os₃H₂(CO)₁₀ and HOH₂CC≡C≡CCH₂OH.⁴⁺

In the reaction to form compound 1, small amounts of another product, compound 2, were formed. Compound 2 could not be obtained pure by chromatographic separation. The crude material contained a number of (probably isomeric) species. Although attempts to chromatographically separate these compounds failed, partial evaporation of a dichloromethane solution of the mixture gave a number of small single crystals of 2. These crystals were suitable for single crystal X-ray diffraction and limited spectroscopic analysis.

The room temperature ¹H NMR spectrum of 2 exhibited a broad, integral 3H multiplet and two integral 1H doublets in the aromatic region, an AB multiplet centred at δ 3.54 and a single hydride resonance at δ -16.94. The presence of an AB multiplet is consistent with a pair of inequivalent methylene protons on the cyclopentene ring. Lowering the temperature to 228K resulted in the broad
peak splitting into two sets of three sharp, well-resolved signals, and the hydride signal splitting into two
(\textit{ca}. 60:40 ratio). These results are most likely to be due to slow exchange between two conformers.
Two conformers, differing by a 180° rotation of the thiophene ring, are noted in the solid state structure
(\textit{vide infra}).

The FAB-MS spectrum did not exhibit the molecular ion; however, a fragment ion arising due to the
loss of one carbonyl, at \textit{m}\textendash\textit{z} 1040, was observed. The IR spectrum was characterised by absorptions for
terminal ν(CO). Spectroscopic evidence leads to the conclusion that the formation of two fused five-
membered rings, one containing a sulfur atom, has occurred. The formation is likely to proceed via ring
opening and hydrogen translocation similar to that observed in an analogous reaction involving 1,4-
diphenylbuta-1,3-diyne.5

The solid state molecular structure of 2 (Figure 2, Table 2) demonstrates that the metal framework of
this compound consists of an open 50 electron triosmium unit, which is coordinated to the rearranged
ligand system. The open triangular unit is also coordinated by ten terminal carbonyls and a bridging
hydride between Os(2) and Os(3). The insertion of a hydride ligand from the parent cluster has been
accompanied by the proton translocation, cyclization and ring fusion of the thiophene and alkyne units.
One of the ring carbons, C(11), from the resulting substituted cyclopentathiothiophene ring has inserted into
the Os(1)-Os(3) edge creating an Os\textsubscript{3}C diamond-shaped core. The transformed ligand acts as a five-
electron donor, bridging all three metal atoms through a carbene interaction from C(11) to Os(1) and
Os(3), a π-interaction from C(15)-C(18) to Os(2) and a σ-bond from C(18) to Os(1). The Os(1)-C(11)
bond distance is 2.198(5) Å, which is significantly shorter than the adjacent Os(3)-C(11) distance
(2.317(5) Å). The bridging hydride could be located from the Fourier map, confirming the results from
the 1H NMR spectrum.

The bond lengths in the tricarbon bridge, C(11)-C(15) and C(15)-C(18) are 1.442(7) Å and 1.422(7) Å
respectively, indicating considerable delocalisation. The C(12) vertex is identified as an sp3 centre
bonded to two protons, which is in accordance with the 1H NMR spectrum of 2. The free thiophene ring
is twisted out of the plane of the bicyclic component of the ligand, as unfavourable steric interactions
between the thiophene ring and H16 would result if the entire ligand was completely planar. This
thiophene ring is disordered (57:43) and thus bond metrics for this unit cannot be reliably obtained.

Figure 2. ORTEP plot (30% displacement ellipsoids) of the X-ray structure of 2 (left) and 3 (right).
Hydrogen atoms (except H1) and minor disorder components are omitted for clarity.

Synthesis of 3.

The reaction between Os$_3$H$_2$(CO)$_{10}$ and 1,4-bis(3-thienyl)butadiyne (L2), analogous to one involving
1,4-bis(2-thienyl)butadiyne, gives a single yellow product [Os$_3$(µ-H)(CO)$_{10}$µ-η$_2$-(C$_4$H$_3$S)(C$_8$H$_6$S)] (3)
(Scheme 1). The reaction was found to proceed notably slower than that involving 1,4-bis(2-thienyl)butadiyne, as monitored by TLC and IR during the reaction; most of the parent cluster was
consumed only after 48 hours. Both crystalline and non-crystalline samples of 3 yielded similar
spectroscopic data, with no evidence of the existence of other structural isomers. The 1H NMR spectrum
consisted of aromatic multiplets at δ 7.37–6.77 (5H), an AB signal at ca. δ 4.1 (2H) and a singlet at δ
-16.9 (1H). This spectrum is similar to that of 2, strongly suggesting a similar coordination mode and
ligand transformation as for 2. The IR spectrum (carbonyl region) of 3 was almost identical to that of 2,
again consistent with the two species having similar structures.
The solid state molecular structure of 3 (Table 2, Figure 2) is similar to that of 2, consisting of a diamond-shaped Os₃C core with open triangular geometry. The osmium-osmium bonds lengths are 2.8757(4) Å [Os(1)-Os(2)] and 2.9111(4) Å [Os(2)-Os(3)], while the non-bonded Os(1)-Os(3) distance is 3.7445(4) Å. There are also ten terminal carboxyls and a bridging hydride across the Os(2)-Os(3) bond. The Os(1)-Os(2)-Os(3) angle is fairly large at 80.647(11)°, compared with that in closed triangular clusters.

The use of 1,4-bis(3-thienyl)butadiyne instead of 1,4-bis(2-thienyl)butadiyne seems to completely prohibit the aromatic ring expansion upon coordination to Os₃H₂(CO)₁₀. Therefore, in contrast to the reaction of triosmium clusters with thiophenes, benzothiophene and thietane,¹¹ it is possible that in addition to the hydride transfer from the cluster core to the coordinating ligand, there is also a significant interaction of one of the thiophene sulfur atoms with either the cluster core, or the alkyl carbons, which may trigger the ring expansion as observed for cluster 1. In the case of 3-thienyl-substitution this pathway becomes unavailable, most likely due to the loss of suitable interaction geometry or distance.

Thermal decarbonylation of 1.

Refluxing a heptane solution of 1 results in thermal decarbonylation to generate the osmium nonacarbonyl species, [Os₃(μ-H)(CO)₇{μ₃-η⁴-(C₄H₃S)(C₈H₄S)}] (4) and [Os₃(μ-H)₂(CO)₈{μ₃-η⁴-(C₄H₃S)(C₈H₄S)}] (5) as orange and red solids, respectively (Scheme 2). Thermal reaction of 1 in refluxing toluene under a hydrogen atmosphere selectively yields the dihydride cluster 5. Extended reaction times (over 48 hours in refluxing toluene) leads to formation of the dihydrido carbonyl cluster [Os₃H₂(CO)₁₀]. Unfortunately, due to the extent of decomposition, and the small amount of the starting cluster used in this experiment, it was not possible to isolate or characterize the resulting organic products cleaved from the parent cluster 1.
Scheme 2. Decarbonylation reactions of 1.

A mass spectrum (FAB) of 4 shows a molecular ion peak at \(m/z \) 1040, which suggests the loss of one carbonyl from the parent cluster. The \(^1\)H NMR spectrum exhibits three related doublets in the \(\delta \) 7.05-7.31 region, which may be assigned as signals from a thiophene group, based on relative coupling values. A single hydride resonance is found at \(\delta \) –18.6, which is typical for an edge bridging coordination mode. Additionally, two pairs of doublets are observed at \(\delta \) 7.04 and 6.44 (J=9.6), and at \(\delta \) 3.68 and 3.52 (J=22.9). The upper field pair of doublets is very similar to those recorded for cluster 2, which indicates the formation of a similar \(sp^3 \) center bonded to two protons. The formation of this vertex from 1 may be explained by a proton translocation from the aromatic sulfur containing ring, followed by transmetallation of the six-membered heterocycle. This process would lead to the loss of aromaticity, which in turn is supported by the upfield shift of the two resonances from the remaining ring-bound protons, relative to analogous protons of 2.

The solid state molecular structure of 4 (Table 1, Figure 3) consists of a closed 48-electron triosmium triangular core with nine terminal carbonyls, a bridging hydride spanning the longest metal-metal bond, Os(1)-Os(2) (2.9034(4) Å), and the transformed organic ligand coordinated to all three metal atoms. The ligand is coordinated to the osmium core through five bonds ranging from 2.048(8) Å [C(11)-Os(2)] to 2.324(7) Å [C(16)-Os(3)], with carbon-carbon bonds ranging from 1.275(12) [C(13)-C(14)] to 1.527(12) Å [C(15)-C(16)], while the carbon-sulfur bonds are 1.742(10) Å and 1.653(9) Å between C(18)-S(1) and C(21)-S(1), respectively. The coordination mode is very similar to previously reported
species. As in 1, the thiophene ring does not deviate significantly from the plane of the fused rings with dihedral angles between the two at only 5.30°.

Figure 3. ORTEP plot (30% displacement ellipsoids) of the X-ray structure of 4 (left) and 5 (right). Hydrogen atoms (except H1 and H2) and minor disorder components are omitted for clarity.

The 1H NMR spectrum of 5 exhibits a similar set of thiophene ring associated protons as those observed in 4, at δ 7.51, 7.38, and 7.15. The two hydride resonances (at δ -14.4 and -15.6) found in the 1H NMR of 5 indicates that a proton transfer from the hydrocarbon ligand has occurred, which has led to the orthometallation of the sulfur containing six-membered ring. In contrast to the structure described for 4, the aromaticity of the heteroaryl ring has been retained, which is also shown by the relative low-field 1H resonances of the ring-bound protons (two doublets centered at δ 8.46 and 7.96), and suggests a similar charge separation observed for the parent cluster.

The solid state molecular structure of 5 (Table 1, Figure 3), consists of a closed triosmium triangular core with nine terminal carbonyls and two bridging hydrides between Os(1)-Os(2) and Os(1)-Os(3). The hydrides spans both the longest [Os(1)-Os(3) 3.0238(3) Å] and the shortest [Os(2)-Os(3) 2.7965(3) Å]
osmium-osmium bond. The bis-thiophene ligand has undergone a transformation similar to that in 1 and 4, with the ligand consisting of a fused five-membered and six-membered sulfur ring linked by C(13)-C(19) 1.441(9) Å to the thiophene ring. This transformed ligand lies almost perpendicular to the plane of the osmium triangle and is bound by C(11)-Os(2) 2.199(6) Å, C(11)-Os(3) 2.188(6) Å and C(16)-Os(1) 2.137(6) Å. The atoms of the lone thiophene ring are disordered over the two sites. The shortest carbon-carbon bond in the fused rings are those between C(17)-C(18) 1.349(10) Å and displays double bond character, the longest carbon-carbon bond has a length of 1.463(9) Å [C(11)-C(15)], while the carbon-sulfur bonds are typical at 1.715(7) for S(1)-C(14) and 1.712(7) for S(1)-C(18).

Thermal decarbonylation of 2 and 3.

Upon refluxing a solution of 2 in heptane, decarbonylation occurs to yield a single yellow product which was characterised by spectroscopic and single crystal X-ray diffraction as the 48-electron cluster [Os₃(µ-H)(CO)₁₀{µ₃-η¹-(C₄H₅S)(C₈H₄S)}] (6) (Scheme 3). Under similar conditions, the analogous compound 3 also loses a terminal carbonyl ligand to give pale yellow crystals of [Os₃(µ-H)(CO)₁₀{µ₃-η¹-(C₄H₅S)(C₈H₄S)}] (7) in quantitative yields (Scheme 3). Unlike in heptane, when the decarbonylation of 3 was performed toluene the reaction does not proceed cleanly, forming decomposition products in addition to 7.
Scheme 3. Thermal decarbonylation of 2 and 3.

The 1H NMR spectrum of 6 exhibited a series of multiplets in the aromatic region, two pairs of doublets at δ 3.60 and δ 3.30, along with a single hydride resonance at δ -18.72. All the signals were slightly shifted relative to those in the 1H NMR spectrum of the parent compound 2. The FAB-MS spectrum exhibited the molecular ion at m/z 1040, while IR spectrum was characterised by absorptions for terminal ν(CO). The 1H NMR spectrum of 7 revealed resonances similar to that found for the parent compound 3, with a singlet at −18.7 ppm arising due to the hydride proton which is shifted by 1.8 ppm from that exhibited in 3. The FAB-MS spectrum along with the IR spectrum obtained for 7 were unremarkable exhibiting the expected molecular ion and absorptions for terminal ν(CO), respectively.

The solid state molecular structure of 6 (Table 2, Figure 5) consists of a closed 48-electron osmium cluster coordinated to nine terminal carbonyls, a bridging hydride, with the transformed ligand being coordinated to all three osmium atoms. The osmium-osmium bond lengths are 2.8012(6) Å [Os(2)-Os(3)], 2.8252(6) Å [Os(1)-Os(3)] and 2.9415(6) Å [Os(1)-Os(2)], with the hydride bridging the longest of the metal-metal bonds. The organic moiety is akin to that in 2 with a fused five-membered ring and a
thiophene attached to another thiophene ring. The ligand coordinates to all three osmium atoms with bonds ranging from 2.076(10) [C(11)-Os(1)] to 2.340(10) [C(15)-Os(3)], with one atom, Os(3) being coordinated by three atoms of the ligand. A similar coordination mode has been observed in other triosmium clusters.7 Within the organic moiety the shortest bonds are those between C(21)-C(22) at 1.342(17) Å and between C(16)-C(17) at 1.352(15) Å, while the longest bonds are C(11)-C(12) 1.526(14)Å and C(12)-C(13) at 1.513(14) Å. The carbon-sulfur bonds range from 1.693(10) to 1.736(12) Å for C(13)-S(1) and C(17)-S(1) respectively.

The solid state molecular structure of 7 (Table 2, Figure 5) is almost identical to 6, except for the difference in the position of the sulfur atom in the organic fragment. The organic moiety is similar to that of 3 and coordinated to all three osmium atoms. The hydride bridges the longest of the osmium-osmium bonds, Os(1)-Os(2), which is 2.9849(4) Å, while Os(1)-Os(3) and Os(2)-Os(3) distances are 2.8165(4) Å and 2.8157(4) Å respectively. Bonds between the osmium and the coordinated ligand range from 2.053(7) to 2.348(7) Å, while the carbon-carbon bonds of the ligand range from the shortest at 1.329(13) Å [C(16)-C(17)] to 1.537(10)Å [C(11)-C(12)]. As in 6, the lone thiophene ring also deviates significantly from the plane of the fused rings with dihedral angles of 64.0°.

Figure 4. ORTEP plot (30 % displacement ellipsoids) of the X-ray structure of 6 (left) and 7 (right). Hydrogen atoms (except H1) and minor disorder components are omitted for clarity.
Reaction of 1 with trifluoroacetic acid.

Ligand transformations upon anchorage to a cluster surface have yielded a wide variety of organic ligands. While these transformations have been useful in modelling surface reactions, the possibility of clusters to be used as catalysts has been proposed but has not actually found application due to the often strong bonds between the metal surfaces and the chelated ligands. In an effort to simulate a clusters’ function as a catalyst, attempts were made to cleave the coordinated organic moiety from cluster 1.

Initial thermal reactions under hydrogen, in the presence of aqueous NaOH, yielded only small amounts of the starting dihydride cluster Os₃(μ-H₂)(CO)₁₀ and the stable decarbonylated clusters 4, 5 and 7. As bases did not produce the results hoped for, attempts were carried out using concentrated hydrochloric acid, based on reports that alkoxy bridge diols were successfully cleaved from a triosmium cluster.¹⁶ Attempts to cleave the organic moiety were also made utilising trifluoromethyl sulfonic acid. However, both reagents proved to be ineffective.

Based on a successful cleavage reaction yielding [Os₃H(CO)₁₀(OOCCF₃)] from [Os₃H(CO)₁₀(OSi≡)],¹⁷ 1 was reacted with an excess of CF₃COOH at 90 °C. Small amounts of the decarbonylated clusters 4 and 5 were formed but the main products were the previously reported [Os₃(μ-H)(CO)₁₀(O₂CCF₃)] (8)¹⁸ and an intensely colored blue compound, subsequently identified as the thiophene-substituted cyclopentathiopyran derivative [(C₄H₅S)(C₆H₄S)OCCF₃] (9) cleaved from the parent cluster. The spectroscopic data obtained for 8 were in accordance with the previously reported values.¹⁸ The ¹H NMR spectrum of 9 exhibited resonances similar to that found in 1, with six resonances in the aromatic region, and a resonance downfield at 9.34 ppm (ca. 9.65 ppm found for 1) due to the protonated carbon of the cyclopentene group fused to the thiopyran. The IR spectrum obtained exhibited ν(COO) at 1662 cm⁻¹, while the FAB-MS spectrum displayed the expected molecular ion.
Scheme 4. Reaction of 1 with CF₃CO₂H.

As the structure of 8 had not been previously reported, a single-crystal X-ray diffraction experiment was carried out. The solid state molecular structure of 8 consists, as expected, of a closed trismium core with a bridging hydride between the longest osmium-osmium bonds, Os(2)-Os(3) 2.9322(5) Å, and ten terminal carbonyl bonds, three each on Os(2) and Os(3) and four on Os(1). The angles within the metal core range from 53.861(11)° for Os(1)-Os(3)-Os(2) to 67.887(13)° for Os(2)-Os(1)-Os(3). The trifluoroacetic acid moiety bridges the triangular osmium core with O(12) bound to Os(2) and O(11) bound to Os(3) at distances of 2.135(5) and 2.122(6) Å respectively.

Figure 5. ORTEP plot of the X-ray structure of 8 (left) and 9 (right). Hydrogen atoms (except H1) and minor disorder components are omitted for clarity.
Table 1. Selected bond lengths (Å) and angles (deg) for 1, 4, 5 and 9.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>4</th>
<th>5</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Os(1)-Os(2)</td>
<td>2.8796(4)</td>
<td>2.9034(4)</td>
<td>2.8446(3)</td>
<td>-</td>
</tr>
<tr>
<td>Os(1)-Os(3)</td>
<td>2.8814(3)</td>
<td>2.7386(4)</td>
<td>3.0238(3)</td>
<td>-</td>
</tr>
<tr>
<td>Os(2)-Os(3)</td>
<td>2.7765(3)</td>
<td>2.8199(4)</td>
<td>2.7965(3)</td>
<td>-</td>
</tr>
<tr>
<td>Os-H(1)²</td>
<td>1.87(4)</td>
<td>1.63(4)</td>
<td>1.88(5)</td>
<td>-</td>
</tr>
<tr>
<td>Os-H(2)²</td>
<td>-</td>
<td>-</td>
<td>1.83(6)</td>
<td>-</td>
</tr>
<tr>
<td>Os-C(CO)</td>
<td>1.904(5)-</td>
<td>1.851(8)-</td>
<td>1.905(6)-</td>
<td>-</td>
</tr>
<tr>
<td>Os(2)-C(11)</td>
<td>2.230(5)</td>
<td>2.048(8)</td>
<td>2.199(6)</td>
<td>-</td>
</tr>
<tr>
<td>Os(3)-C(11)</td>
<td>2.235(5)</td>
<td>2.293(7)</td>
<td>2.188(6)</td>
<td>-</td>
</tr>
<tr>
<td>Os(1)-C(16)</td>
<td>-</td>
<td>2.074(8)</td>
<td>2.137(6)</td>
<td>-</td>
</tr>
<tr>
<td>Os(3)-C(15)</td>
<td>-</td>
<td>2.302(7)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Os(3)-C(16)</td>
<td>-</td>
<td>2.324(7)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S(1)-C(14)</td>
<td>1.690(5)</td>
<td>1.744(8)</td>
<td>1.715(7)</td>
<td>1.693(5)</td>
</tr>
<tr>
<td>S(1)-C(18)</td>
<td>1.689(6)</td>
<td>1.684(8)</td>
<td>1.712(7)</td>
<td>1.664(5)</td>
</tr>
<tr>
<td>Os(2)-Os(1)-Os(3)</td>
<td>57.625(7)</td>
<td>59.890(10)</td>
<td>56.821(8)</td>
<td>-</td>
</tr>
<tr>
<td>Os(1)-Os(2)-Os(3)</td>
<td>61.220(8)</td>
<td>57.152(9)</td>
<td>64.821(9)</td>
<td>-</td>
</tr>
<tr>
<td>Os(2)-Os(3)-Os(1)</td>
<td>61.155(9)</td>
<td>62.958(10)</td>
<td>58.357(8)</td>
<td>-</td>
</tr>
</tbody>
</table>

a. averaged value
Table 2. Selected bond lengths (Å) and angles (deg) for 2, 3, 6 and 7.

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Os(1)-Os(2)</td>
<td>2.8702(3)</td>
<td>2.8757(4)</td>
<td>2.9415(6)</td>
<td>2.9849(4)</td>
</tr>
<tr>
<td>Os(1)-Os(3)</td>
<td>2.956</td>
<td>2.958</td>
<td>3.061</td>
<td>3.069</td>
</tr>
<tr>
<td>Os(2)-Os(3)</td>
<td>-</td>
<td>-</td>
<td>2.8252(6)</td>
<td>2.8165(4)</td>
</tr>
<tr>
<td>Os-H(1)a</td>
<td>2.912</td>
<td>2.910</td>
<td>2.910</td>
<td>2.910</td>
</tr>
<tr>
<td>Os-H(1)b</td>
<td>2.8012(6)</td>
<td>2.8157(4)</td>
<td>2.8157(4)</td>
<td>2.8157(4)</td>
</tr>
<tr>
<td>Os-C(CO)</td>
<td>1.826</td>
<td>1.827</td>
<td>1.805</td>
<td>1.805</td>
</tr>
<tr>
<td>Os(1)-C(11)</td>
<td>1.895(6)</td>
<td>1.910(8)-</td>
<td>1.907(11)-</td>
<td>1.890(8)-</td>
</tr>
<tr>
<td>Os(1)-C(12)</td>
<td>1.950(6)</td>
<td>1.947(8)</td>
<td>1.979(11)</td>
<td>1.952(8)</td>
</tr>
<tr>
<td>Os(1)-C(13)</td>
<td>2.198(5)</td>
<td>2.197(6)</td>
<td>2.076(10)</td>
<td>2.053(7)</td>
</tr>
<tr>
<td>Os(2)-C(18)</td>
<td>2.240</td>
<td>2.241</td>
<td>2.087</td>
<td>2.084</td>
</tr>
<tr>
<td>Os(3)-C(11)</td>
<td>2.317(5)</td>
<td>2.325(7)</td>
<td>2.261(11)</td>
<td>2.299(7)</td>
</tr>
<tr>
<td>Os(3)-C(15)</td>
<td>2.236</td>
<td>2.366</td>
<td>2.331</td>
<td>2.343</td>
</tr>
<tr>
<td>Os(3)-C(18)</td>
<td>2.290(5)</td>
<td>2.287(7)</td>
<td>2.340(10)</td>
<td>2.348(6)</td>
</tr>
<tr>
<td>Os(2)-Os(1)-Os(3)</td>
<td>-</td>
<td>-</td>
<td>58.08(14)</td>
<td>57.98(3)</td>
</tr>
<tr>
<td>Os(1)-Os(2)-Os(3)</td>
<td>81.04(8)</td>
<td>80.64(10)</td>
<td>58.88(14)</td>
<td>58.00(9)</td>
</tr>
<tr>
<td>Os(2)-Os(3)-Os(1)</td>
<td>-</td>
<td>-</td>
<td>63.03(14)</td>
<td>64.00(8)</td>
</tr>
</tbody>
</table>

a. averaged value
b. S(1)-C(14)
Computational Studies

The credible location of hydrides using X-ray crystallography is notoriously challenging, particularly in the presence of very heavy atoms. Thus, to support the formulation of the osmium complexes, DFT calculations were performed to confirm the geometry, in particular whether the location of the hydride(s) was correct. Within the expected tolerances, the calculated structures were in good agreement with those obtained from the X-ray experiment (Table 1 and 2). The Os-Os and Os-C distances in the calculated structures are slightly longer than those in the solid state; this feature is found for all complexes. In cases where the experimental geometries were suspect (e.g. in 4, C(13)-C(14) is unusually short at 1.288(11) Å) the calculated bond parameters seemed more reasonable (1.365 Å). The calculated hydride locations also matched well with those obtained from the X-ray experiment, and this point, together with the fact that the non-hydrogen atomic positions also show good agreement between experiment and theory, suggest that the formulation of the compounds is correct.

Conclusions.

In summary, we have studied the coordination of 2- and 3-thienyl substituted diynes to the trioctetanium cluster Os₃H₂(CO)₁₀. In the present study the aromatic endgroups are shown to undergo significant transformations upon coordination to the trioctetanium core, including intramolecular cyclizations and formation of novel heteroaryl subunits. Although the reaction mechanisms for the transformations remain unclear, it is likely that the availability of the sulfur atom for coordination to the metal center, and the presence of the osmium bound bridging hydrides, are key factors which determine the type of the ligand transformation.

Following the common trend for trioctetanium clusters, compound 1 may be thermally decarbonylated to yield the osmium nonacarbonyl species 4 and 5, which are not thermally interconvertible. Compounds 2 and 3 can be decarbonylated to give the nonacarbonyl compounds 6 and 7 respectively. In the case of 1,
the transformed organic moiety could be removed from the osmium cluster by treatment with trifuoroacetic acid.

Experimental Section

General Procedures

The parent osmium cluster Os₃H₂(CO)₁₀, 1,4-bis(2-thienyl)butadiyne and 1,4-bis(3-thienyl)butadiyne were prepared by literature methods. All other reagents were of analytical grade and were used as received. The compounds 2,7-dimethylocta-3,5-diyne-2,7-diol and [PdCl₂(PPh₃)₂] were purchased from Lancaster, CuI and 2- and 3-bromothiophenes from Avocado, benzyltriethylammonium chloride from Aldrich, and Os₃(CO)₁₂ from Strem Chemicals. The reactions were carried out under an nitrogen atmosphere using freshly distilled solvents. All manipulations of the products were performed in air. Thin layer chromatography was performed on commercial 20 x 20 cm plates (Aldrich) covered with Merck silica gel 60 F254 to 0.25 or 1.0 mm thickness. Column chromatography separations were performed using 2x40 cm column and SG 60 silica gel (Aldrich).

Infrared spectra were measured using a Nicolet Avatar 360 FTIR spectrometer from dichloromethane solutions. ¹H NMR and ¹³C{¹H} NMR spectra were recorded on a Bruker AV300 spectrometer or a Bruker AV500 spectrometer using CDCl₃ as a solvent, at room temperature unless otherwise specified. In the spectrum of 1, chemical shifts were assigned with the aid of HMQC and HMBC experiments.

Crystallographic Methods. The diffraction data were collected using a Nonius Kappa CCD diffractometer using standard MoKα radiation or an Apex II diffractometer at Station 9.8, Daresbury SRS. Data were processed using the supplied Nonius or Bruker software. Structure solution, followed by full-matrix least squares refinement was performed using Sir97, and/or SHELX under the WinGX package. Hydrides were located and restrained to be symmetrically bridging, but otherwise freely refined. All other hydrogen atoms were placed in idealized positions. The crystallographic data for compounds 1-9 are collected in Tables 3 and 4.
Computational Studies. All calculations were performed using the B3LYP\(^{23}\) hybrid density functional under the Gaussian 09 package.\(^{24}\) Geometry optimisations ("tight" convergence criteria) were performed using a quasi-relativistic pseudopotential and associated basis set (SDD) for osmium,\(^{25}\) and a 6-31G(d,p)\(^{26}\) basis set for all other atoms. Frequency calculations were performed at the optimised geometries to confirm the nature of the stationary points. Free energies are reported for a temperature of 298 K and a pressure of 1 atm.

Preparation of \([\text{Os}_3(\mu-H)(\text{CO})_{10}\{\mu-\eta-(C_6H_5S)(C_5H_4S)}\}] (1) and \([\text{Os}_3(\mu-H)(\text{CO})_{10}\{\mu-\eta^2-\eta-\eta^1-(SC_7H_4)C(SC_4H_3)\}] (2).

A solution of \(\text{Os}_3\text{H}_2(\text{CO})_{10}\) (200 mg, 0.21 mmol) and 1,4-bis(2-thienyl)butadiyne (LI) (47 mg, 0.22 mmol) in dichloromethane (40 mL) was stirred for 12 h under nitrogen, at room temperature. The solvent was removed *in vacuo* and the residue was subjected to preparative TLC (eluent: hexane/dichloromethane 3:1). Two fractions were obtained: a minor yellow-orange band with high \(R_f\) (51 mg, 35%) and a major green band, 1 (135 mg, 55 %) with lower \(R_f\). Evaporation of a dichloromethane solution of 1 yielded dark green crystals suitable for X-ray diffraction study. The orange material could not be completely separated, but slow evaporation of a solution in dichloromethane/hexane gave small single crystals of 2 suitable for X-ray diffraction studies and spectroscopic analysis.

\[
[\text{Os}_3(\mu-H)(\text{CO})_{10}\{\mu-\eta-(C_6H_5S)(C_5H_4S)}\}] (1). \text{IR (CH}_2\text{Cl}_2, \nu(\text{CO})/\text{cm}^{-1}: 2095(s), 2086(sh), 2060(vs), 2052(vs), 2039(sh), 2007(vs), 1998(sh), 1976(m).
\]

\(^1\text{H NMR (500.1 MHz, CDC}_3, 220K) \delta 9.60 (s, H12), 8.38 (d, \(^3\)J=8.5 Hz, H18), 7.95 (dd, \(^3\)J=8.5, 8.0 Hz, H17), 7.90 (d, \(^3\)J=8.0 Hz, H16), 7.54 (d, \(^3\)J=3.5 Hz, H20), 7.43 (d, \(^3\)J=5 Hz, H22), 7.23 (dd, \(^3\)J=5.0, 3.5 Hz, H21), -14.90 (s, Os-H).
\]

\(^{13}\text{C NMR (125.8 MHz, CDC}_3, 220K) \delta 188.89 (CO), 182.90 (CO), 180.92 (CO), 178.41 (CO), 178.29 (C12), 176.88 (CO), 171.75 (CO), 164.69 (C15), 142.97 (C16), 142.55 (C14), 136.60 (C19), 133.83 (C18), 128.43 (C21), 125.10 (C13), 123.96 (C22), 122.90 (C20), 121.79 (C17), 63.07 (C11).
FAB MS (m/z) 1068 [M]+. Anal. Calcd for C_{22}H_8O_{10}S_2Os_3: C, 24.7; H, 0.75. Found: C, 24.8; H, 0.8.

[Os_3(\mu-H)(CO)_{10}\{\mu-\eta^2-\eta^1-\eta^1-(SC_7H_4)C(SC_4H_5)\}] (2).

IR (CH_2Cl_2), ν(CO)/cm^{-1}: 2111(w), 2083(m), 2058(vs), 2027(vs), 2006(s), 1983(sh).

\(^1\)H NMR (500.1 MHz, CD_2Cl_2, 298K) δ 7.17 (br, 3H, C_4H_2S), 7.13 (d, J=5.1 Hz, 1H, C_4H_2S), 5.97 (J=5.1 Hz, 1H, C_4H_2S), 3.54 (AB, J~22 Hz, 2H, CH_2), -16.94 (s, 1H, Rh-H).

\(^1\)H NMR (500.1 MHz, CD_2Cl_2, 228K) δ 7.46 (d, \(^3\)J=5.1 Hz, 1H, H_m), 7.27 (dd, J=5.2, 3.4 Hz, 1H, H_M), 7.20 (d, J=3.4 Hz, 1H, H_M), 7.12 (d, \(^3\)J=5.1 Hz, 1H, H_{M+m}), 7.04 (d, \(^3\)J=5.2 Hz, 1H, H_M), 6.93 (dd, J=5.2, 3.2 Hz, 1H, H_m), 6.60 (d, \(^3\)J=3.2 Hz, 1H, H_m), 5.86 (d, J~5 Hz, 1H, H_m), 5.85 (d, J~5 Hz, 1H, H_{M+m}), 3.50 (AB, J~23 Hz, CH_2; M+m), -17.00 (s, 1H, Rh-H_M), -17.08 (s, 1H, Rh-H_m). H_M = major isomer, H_m = minor isomer.

FAB MS (m/z) 1040 [M-CO]^+. Anal. Calcd for C_{22}H_8O_{10}S_2Os_3: C, 24.7; H, 0.75. Found: C, 24.6; H, 0.9.

Preparation of [Os_3(\mu-H)(CO)_{10}\{\mu-\eta-(C_4H_2S)(C_4H_4S)\}] (3).

A solution of Os_3H_2(CO)_{10} (143 mg, 0.17 mmol) and 1,4-bis(3-thienyl)butadiyne (L_2) (40 mg, 0.19 mmol) in dichloromethane (40 mL) was stirred at room temperature under nitrogen. The reaction was monitored by TLC, which showed that most of the parent cluster was consumed after 48 hours. The resulting yellow solution was concentrated under reduced pressure, and separated via preparative TLC (eluent: dichloromethane/hexane 1:6). The major yellow band was collected to give 3 as a yellow solid (120 mg, 70%). Crystals suitable for single-crystal X-ray diffraction were grown by recrystallization of a chloroform solution of 3 at ~20 °C.

[Os_3(\mu-H)(CO)_{10}\{\mu-\eta-(C_4H_2S)(C_4H_4S)\}] (3). IR (CH_2Cl_2), ν(CO)/cm^{-1}: 2110(m), 2081(vs), 2056(vs), 2024(vs), 2001(s), 1974(sh). \(^1\)H NMR (300.1 MHz, CDCl_3), δ 7.37 (dd, \(^3\)J=4.8 Hz, \(^4\)J=3.0 Hz, 1H), 7.28 (d, \(^3\)J=4.8 Hz, 1H), 7.01 (dd, \(^3\)J=4.8 Hz, \(^4\)J=1.2 Hz, 1H), 6.93 (d, \(^3\)J=4.8 Hz, 1H), 6.77 (dd, \(^4\)J=3.0 Hz,
\[4J=1.5 \text{ Hz}, 1H \], 4.24 (d, \[2J=22 \text{ Hz}, 1H \]), 4.04 (d, \[2J=22 \text{ Hz}, 1H \]), -16.9 (s, 1H). FAB MS (m/z) 1068

\[[M]^+ \]. Anal. Calcld for C\[22\]H\[8\]O\[10\]S\[2\]O\[3\]: C, 24.7; H, 0.75. Found: C, 24.8; H, 0.80.

Thermal decarbonylation of 1 to give \[Os_3(\mu-H)(CO)_3[\mu-\eta^3-(C_4H_5S)(C_8H_4S)] \] (4) and \[Os_3(\mu-H)_2(CO)_3[\mu-\eta^3-\eta^1-(C_4H_5S)(C_8H_4S)] \] (5).

A solution of 1 (60 mg, 0.056 mmol) in heptane (35 mL) was heated to 65 °C under nitrogen, and the temperature maintained for 3h. The resulting orange solution was cooled to room temperature and the solvent removed under reduced pressure. Purification of was performed using preparative TLC (eluent: dichloromethane/hexane 3:7). The orange product (high R\[f\]) was recrystallised from a dichloromethane solution to give 4 as a microcrystalline solid (23 mg, 40 %). Evaporation of a concentrated chloroform solution at -20 °C of the red solid yielded 5 as dark red crystals (22 mg, yield 38 %).

\[Os_3(\mu-H)(CO)_3[\mu-\eta^3-(C_4H_5S)(C_8H_4S)] \] (4). IR (CH\(_2\)Cl\(_2\)), \nu(CO)/cm\(^{-1}\): 2102(s), 2059(vs), 2022(s), 2012(sh), 1991(m), 1961(m). \(^1\)H NMR (300.1 MHz, CDCl\(_3\)), \(\delta\) 7.31 (dd, \(3J=5.1 \text{ Hz}, 4J=1.1 \text{ Hz}, 1H\)), 7.13 (dd, \(3J=3.7 \text{ Hz}, 3J=5.1 \text{ Hz}, 1H\)), 7.10 (dd, \(3J=3.7 \text{ Hz}, 4J=1.1 \text{ Hz}, 1H\)), 7.04 (d, \(3J=9.6 \text{ Hz}, 1H\)), 6.44 (d, \(3J=9.6 \text{ Hz}, 1H\)), 3.68 (d, \(2J=23 \text{ Hz}, 1H\)), 3.52 (d, \(2J=23 \text{ Hz}, 1H\)), -18.58 (s, 1H). FAB MS (m/z) 1040

\[[M]^+ \]. Anal. Calcld for C\[21\]H\[15\]O\[6\]S\[2\]O\[3\]: C, 24.27; H, 0.78. Found: C, 24.4; H, 0.66.

\[Os_3(\mu-H)_2(CO)_3[\mu-\eta^3-\eta^1-(C_4H_5S)(C_8H_4S)] \] (5). IR (CH\(_2\)Cl\(_2\)), \nu(CO)/cm\(^{-1}\): 2099(m), 2086(sh), 2066(vs), 2055(sh), 2030(m), 2017(sh), 1989(sh). \(^1\)H NMR (300.1 MHz, CDCl\(_3\)), \(\delta\) 8.46 (d, \(3J=8.6 \text{ Hz}, 1H\)), 7.96 (d, \(3J=8.6 \text{ Hz}, 1H\)), 7.84 (s, 1H), 7.51 (dd, \(3J=3.7 \text{ Hz}, 4J=1.1 \text{ Hz}, 1H\)), 7.38 (dd, \(3J=5.1 \text{ Hz}, 4J=1.1 \text{ Hz}, 1H\)), 7.15 (dd, \(3J=5.1 \text{ Hz}, 3J=3.7 \text{ Hz}, 1H\)), -14.38 (s, 1H), -15.58 (s, 1H). FAB MS (m/z) 1040 [M]^+. Anal. Calcld for C\[21\]H\[14\]O\[6\]S\[2\]O\[3\]: C, 24.27; H, 0.78. Found: C, 24.1; H, 0.85.

Thermal decarbonylation of 2 to give \[Os_3(\mu-H)(CO)_3[\mu-\eta^3-(C_4H_5S)(C_8H_4S)] \] (6).

A heptane solution of 2 (30 mL, 30 mg, 0.03 mmol) was heated at 90 °C under a nitrogen atmosphere for 27 h. The resulting yellow solution was cooled to room temperature, and the solvent removed under reduced pressure. Purification of the product was performed using preparative TLC (eluent: dichloromethane/hexane 1:4) resulting in 2 (6mg, 20%) and the decarbonylated yellow product 6 (7mg,
24 %). Crystals suitable for single crystal X-ray diffraction were grown by solvent diffusion from a
dichloromethane/heptane mixture.

IR (CH₂Cl₂), ν(CO) / cm⁻¹: 2097(s), 2072(vs), 2045(s), 2018(sh), 2004(s), 1990(sh). ¹H NMR (300.1
MHz, CDCl₃) δ 7.49 (dd, 3J=4.8, 4J=3.2 Hz, 1H), 7.20 (d, 3J=4.8 Hz, 1H), 7.17 (dd, 3J=4.8, 4J=1.2 Hz,
1H), 7.03 (dd, 4J=2.7, 4J=1.2 Hz, 1H), 6.81 (d, 3J=4.8 Hz, 1H), 3.60 (d, 2J=22 Hz, 1H), 3.30 (d, 2J=22
Hz, 1H), −18.72 (s, 1H). FAB MS (m/z) 1040 [M⁺]. Owing to the small amount of the product,
 elemental analysis was not acquired for cluster 6.

Thermal decarbonylation of 3 to give [Os₃(μ-H)(CO)₅{μ₃-η³-(C₄H₃S)(C₈H₄S)}] (7).

A heptane solution of 3 (35 mL, 100 mg, 0.09 mmol) was heated at 80 °C for 14 h under a nitrogen
atmosphere. The resulting yellow solution was cooled to room temperature and the solvent removed
under reduced pressure. Purification by preparative TLC (eluent: dichloromethane/hexane 1:4) and
subsequent crystallization from a dichloromethane solution yielded pale yellow crystals of 7 (77 mg, 79
%) suitable for single crystal X-ray diffraction.

Compound 7 was also formed (in ca. 30 % yield) when 3 was refluxed in toluene (40 mL) under H₂
atmosphere for 14 h. The reaction mixture contained some starting material, 3, a small amount of
Os₃H₂(CO)₁₀, and a dark-brown decomposition product

IR (CH₂Cl₂), ν(CO)/cm⁻¹: 2097(s), 2071(vs), 2045(s), 2016(sh), 2002(s), 1991(sh). ¹H NMR (300.1
MHz, CDCl₃) δ 7.49 (dd, 3J=4.8, 4J=3.2 Hz, 1H), 7.20 (d, 3J=4.8 Hz, 1H), 7.17 (dd, 3J=4.8, 4J=1.2 Hz,
1H), 7.03 (dd, 4J=2.7, 4J=1.2 Hz, 1 H), 6.81 (d, 3J=4.8 Hz, 1H), 3.60 (d, 2J=22 Hz, 1H), 3.30 (d, 2J=22
Hz, 1H), −18.72 (s, 1H). FAB MS (m/z) 1040 [M⁺]. Anal. Calcd for C₂₁H₈O₉S₂O₅₃: C, 24.27; H, 0.78.
Found: C, 24.7; H, 0.9.

Reaction of 1 with trifluoroacetic acid to give [Os₃(μ-H)(CO)₅{μ₃-η³-(C₄H₃S)(C₈H₄S)}] (4),
[Os₃(μ-H)₂(CO)₅{μ₃-η¹-η²-(C₄H₃S)(C₈H₄S)}] (5), [Os₃(μ-H)(CO)₁₀(O₂CCF₃)] (8) and
[(C₄H₃S)(C₈H₄S)OCCF₃] (9).
Trifluoroacetic acid (CF₃COOH) (99 %, 1.5 mL) was added dropwise to a solution of 1 (50 mg, 0.05 mmol) in toluene (50 mL) and the dark green mixture was heated to 90 °C under nitrogen for 3h and monitored by TLC. The resulting dark violet solution was cooled to room temperature, and the solvent removed under reduced pressure. Purification by preparative TLC (eluent: dichloromethane/hexane 1:3) yielded small amounts of the expected decarboxylated clusters 4 (3 mg, 6 %), and 5 (10 mg, 21 %), as well as the yellow product 8 (high R₆, 21 mg, 46 %), and an intensely deep blue colored product 9 (low R₆, 10 mg, 68 %). Crystals suitable for single crystal X-ray diffraction of 8 were grown by slow evaporation from a dichloromethane solution at −20 °C. Crystals suitable for single crystal X-ray diffraction of 9 were grown from slow evaporation of dichloromethane and chloroform solutions under nitrogen at −20 °C.

[Os₃(μ-H)(CO)₁₀(O₂CCF₃)] (8) The spectroscopic data for 8 were in accordance with the previously reported values.¹⁷

[(C₄H₉S)(C₆H₄S)OCCF₃] (9) IR (CH₂Cl₂), v(CO)/cm⁻¹: not observed; ν(COO)/cm⁻¹: 1662(m). ¹H NMR (300.1 MHz, CDCl₃) δ 9.34 (d, ³J=8.1 Hz, 1H), 8.28 (m, 1H), 8.24 (d, ³J=8.7 Hz, 1H), 7.71 (dd, ³J=8.7, ³J=8.1 Hz, 1H), 7.40 (dd, ³J=3.6 Hz, ⁴J=0.9 Hz, 1H), 7.29 (dd, ³J=5.0 Hz, ⁴J=0.6 Hz, 1H), 7.12 (dd, ³J=5.0, ⁴J=3.6 Hz, 1H). FAB MS (m/z) 312 [M⁺]. Anal. Calcd for C₁₄H₁₂F₃O₂S₂: C, 53.84 H, 2.26. Found: C, 54.0 H, 2.3.
Table 3. Crystallographic data for 1-4.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4 · CH₂Cl₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda), Å</td>
<td>0.68960</td>
<td>0.68960</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>temp, K</td>
<td>100</td>
<td>100</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>fw</td>
<td>1067.00</td>
<td>1067.00</td>
<td>1067.00</td>
<td>1123.92</td>
</tr>
<tr>
<td>cryst syst</td>
<td>triclinic</td>
<td>monoclinic</td>
<td>monoclinic</td>
<td>monoclinic</td>
</tr>
<tr>
<td>space group</td>
<td>P -1</td>
<td>P 2₁/c</td>
<td>P 2₁/c</td>
<td>P 2₁/n</td>
</tr>
<tr>
<td>a, Å</td>
<td>9.3029(8)</td>
<td>9.3559(7)</td>
<td>9.5820(1)</td>
<td>10.1345(1)</td>
</tr>
<tr>
<td>b, Å</td>
<td>9.5330(8)</td>
<td>12.9130(9)</td>
<td>12.8410(2)</td>
<td>10.0843(1)</td>
</tr>
<tr>
<td>c, Å</td>
<td>15.6280(13)</td>
<td>21.0946(15)</td>
<td>20.8926(3)</td>
<td>24.6832(3)</td>
</tr>
<tr>
<td>(\alpha), °</td>
<td>76.505(1)</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>(\beta), °</td>
<td>86.052(1)</td>
<td>101.1786(7)</td>
<td>99.667(1)</td>
<td>92.779(1)</td>
</tr>
<tr>
<td>(\gamma), °</td>
<td>65.963(1)</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>(V), Å³</td>
<td>1230.29(18)</td>
<td>2500.1(3)</td>
<td>2534.17(6)</td>
<td>2519.64(5)</td>
</tr>
<tr>
<td>(Z)</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(D_{\text{calc}}), g/cm³</td>
<td>2.880</td>
<td>2.835</td>
<td>2.797</td>
<td>2.963</td>
</tr>
<tr>
<td>cryst size, mm</td>
<td>0.06 x 0.06 x 0.03</td>
<td>0.03 x 0.01 x 0.01</td>
<td>0.3 x 0.3 x 0.3</td>
<td>0.25 x 0.13 x 0.10</td>
</tr>
<tr>
<td>(\mu), mm⁻¹</td>
<td>15.679</td>
<td>15.431</td>
<td>15.223</td>
<td>15.522</td>
</tr>
<tr>
<td>(\theta) limits, deg</td>
<td>1.31-29.75</td>
<td>3.50-29.51</td>
<td>2.98-27.47</td>
<td>3.71-28.68</td>
</tr>
<tr>
<td>N (unique)</td>
<td>7327</td>
<td>7605</td>
<td>5794</td>
<td>6002</td>
</tr>
<tr>
<td>R(int)</td>
<td>0.0262</td>
<td>0.0540</td>
<td>0.0776</td>
<td>0.1115</td>
</tr>
<tr>
<td>N (I>2(\sigma)(I))</td>
<td>6447</td>
<td>6767</td>
<td>5190</td>
<td>5310</td>
</tr>
<tr>
<td>no. of params</td>
<td>337</td>
<td>340</td>
<td>334</td>
<td>348</td>
</tr>
<tr>
<td>(R1) (I>2(\sigma)(I))</td>
<td>0.0310</td>
<td>0.0314</td>
<td>0.0357</td>
<td>0.0417</td>
</tr>
<tr>
<td>(wR2) (all data)</td>
<td>0.0651</td>
<td>0.0701</td>
<td>0.0952</td>
<td>0.1047</td>
</tr>
<tr>
<td>goodness of fit</td>
<td>1.053</td>
<td>1.053</td>
<td>1.143</td>
<td>1.062</td>
</tr>
</tbody>
</table>
Table 4. Crystallographic data for 5-9.

<table>
<thead>
<tr>
<th></th>
<th>5 - CH₂Cl₂</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ, Å</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>temp, K</td>
<td>150</td>
<td>150</td>
<td>299</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>fw</td>
<td>1123.92</td>
<td>1038.99</td>
<td>1038.99</td>
<td>964.73</td>
<td>312.32</td>
</tr>
<tr>
<td>cryst syst</td>
<td>triclinic</td>
<td>monoclinic</td>
<td>triclinic</td>
<td>orthorhombic</td>
<td>monoclinic</td>
</tr>
<tr>
<td>space group</td>
<td>P -1</td>
<td>P 2₁/c</td>
<td>P -1</td>
<td>P bca</td>
<td>P 2₁/n</td>
</tr>
<tr>
<td>a, Å</td>
<td>8.0318(1)</td>
<td>7.1181(1)</td>
<td>9.7914(1)</td>
<td>14.4142(3)</td>
<td>5.0930(4)</td>
</tr>
<tr>
<td>b, Å</td>
<td>13.0303(2)</td>
<td>9.3994(2)</td>
<td>9.8672(2)</td>
<td>16.1384(4)</td>
<td>13.0000(10)</td>
</tr>
<tr>
<td>c, Å</td>
<td>13.3423(2)</td>
<td>35.2309(7)</td>
<td>14.7041(3)</td>
<td>14.1976(4)</td>
<td>19.9540(16)</td>
</tr>
<tr>
<td>α, °</td>
<td>93.248(1)</td>
<td>90</td>
<td>101.234(1)</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β, °</td>
<td>97.560(1)</td>
<td>95.504(1)</td>
<td>96.840(1)</td>
<td>90</td>
<td>95.239(4)</td>
</tr>
<tr>
<td>γ, °</td>
<td>101.826(1)</td>
<td>90</td>
<td>115.936(1)</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>V, Å³</td>
<td>1349.80(3)</td>
<td>2346.29(8)</td>
<td>1218.98(4)</td>
<td>3302.68(14)</td>
<td>1249.68(17)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Dcalc, g/cm³</td>
<td>2.765</td>
<td>2.941</td>
<td>2.831</td>
<td>3.880</td>
<td>1.660</td>
</tr>
<tr>
<td>cryst size, mm</td>
<td>0.3 x 0.05 x 0.05</td>
<td>0.25 x 0.03 x 0.03</td>
<td>0.30 x 0.10 x 0.05</td>
<td>0.13 x 0.10 x 0.08</td>
<td>0.25 x 0.08 x 0.05</td>
</tr>
<tr>
<td>μ, mm⁻¹</td>
<td>14.487</td>
<td>16.435</td>
<td>15.831</td>
<td>23.129</td>
<td>0.453</td>
</tr>
<tr>
<td>θ limits, deg</td>
<td>3.01-27.51</td>
<td>4.11-27.35</td>
<td>3.71-30.09</td>
<td>3.79-31.34</td>
<td>3.13-25.03</td>
</tr>
<tr>
<td>N (unique)</td>
<td>6186</td>
<td>5230</td>
<td>7117</td>
<td>4301</td>
<td>2205</td>
</tr>
<tr>
<td>R(int)</td>
<td>0.0818</td>
<td>0.1356</td>
<td>0.0798</td>
<td>0.0900</td>
<td>0.2113</td>
</tr>
<tr>
<td>N (I>2σ(I))</td>
<td>5460</td>
<td>3916</td>
<td>5999</td>
<td>3274</td>
<td>1236</td>
</tr>
<tr>
<td>no. of params</td>
<td>347</td>
<td>319</td>
<td>316</td>
<td>275</td>
<td>178</td>
</tr>
<tr>
<td>R1 (I>2σ(I))</td>
<td>0.0398</td>
<td>0.0485</td>
<td>0.0508</td>
<td>0.0402</td>
<td>0.0679</td>
</tr>
<tr>
<td>wR2 (all data)</td>
<td>0.1047</td>
<td>0.1019</td>
<td>0.1377</td>
<td>0.0942</td>
<td>0.1800</td>
</tr>
<tr>
<td>goodness of fit</td>
<td>1.030</td>
<td>1.053</td>
<td>1.041</td>
<td>1.000</td>
<td>1.037</td>
</tr>
</tbody>
</table>
Acknowledgements: We thank the EPSRC for a Senior Fellowship (to PRR), and for funding (to LPC and OFK). The support of the University of Bath for funding support for SKB and PH is gratefully acknowledged.

Supporting Information Available: Tables of selected bond parameter data for compounds 1-9 together with bond parameter data obtained from the DFT calculations. Calculated atomic coordinates for the optimised structures of compounds 1-9, L1, L2 and Os3(H)2(CO)10 (xyz format). X-ray atomic coordinates, thermal parameters, bond distances, and angles for compounds 1 – 9 (cif format). This material is available free of charge via the Internet at http://pubs.acs.org.

References

(24) M. J. Frisch et al., Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.

Table of Contents Entry

For Table of Contents use Only

![Chemical Reaction Diagram](image-url)