Automatic Panoramic Image Stitching using Invariant Features


Brown, M. and Lowe, D. G., 2007. Automatic Panoramic Image Stitching using Invariant Features. International Journal of Computer Vision, 74 (1), pp. 59-73.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below.

Official URL:


This paper concerns the problem of fully automated panoramic image stitching. Though the 1D problem (single axis of rotation) is well studied, 2D or multi-row stitching is more difficult. Previous approaches have used human input or restrictions on the image sequence in order to establish matching images. In this work, we formulate stitching as a multi-image matching problem, and use invariant local features to find matches between all of the images. Because of this our method is insensitive to the ordering, orientation, scale and illumination of the input images. It is also insensitive to noise images that are not part of a panorama, and can recognise multiple panoramas in an unordered image dataset. In addition to providing more detail, this paper extends our previous work in the area (Brown and Lowe, 2003) by introducing gain compensation and automatic straightening steps.


Item Type Articles
CreatorsBrown, M.and Lowe, D. G.
DepartmentsFaculty of Science > Computer Science
ID Code26117


Actions (login required)

View Item