The onset of Darcy-Brinkman convection in a porous layer: An asymptotic analysis


Rees, D. A. S., 2002. The onset of Darcy-Brinkman convection in a porous layer: An asymptotic analysis. International Journal of Heat and Mass Transfer, 45 (11), pp. 2213-2220.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below.


In highly porous media boundary (Brinkman) effects are important near impermeable surfaces. We investigate in detail how these effects modify the well-known criterion for the onset of convection of a Boussinesq fluid in a porous medium where Darcy's law applies. It is known that boundary effects serve to raise the critical Darcy-Rayleigh number as D, the Darcy number, increases. For many porous media the value of D is small and this causes severe numerical difficulties in solving the perturbation equations. We extend an earlier numerical study by Walker and Homsy [A.S.M.E. J. Heat Transfer 99 (1977) 338] by performing an asymptotic analysis of the singular perturbation problem which arises in the small-D limit. Excellent agreement is obtained between the asymptotic and numerical results. © 2002 Published by Elsevier Science Ltd.


Item Type Articles
CreatorsRees, D. A. S.
Uncontrolled Keywordsheat convection,perturbation techniques,porous materials,mechanical permeability
DepartmentsFaculty of Engineering & Design > Mechanical Engineering
ID Code2615


Actions (login required)

View Item