Research

Optimum trajectory planning for industrial robots through inverse dynamics


Reference:

Ayten, K. K., Iravani, P. and Sahinkaya, M. N., 2011. Optimum trajectory planning for industrial robots through inverse dynamics. In: ICINCO 2011 - Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics. Setubal, Portugal: INSTICC Press, pp. 105-110.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below.

Official URL:

http://www.icinco.org/ICINCO2011/

Abstract

This paper presents a method for developing robot trajectories that achieve minimum energy consumption for a point-to-point motion under kinematic and dynamic constraints. The method represents trajectories as a fourth degree B-spline function. The parameters of the function are optimised using a multi-parametric optimization algorithm. Actuator torques have been considered for the formulation of the cost function, which utilizes an inverse dynamics analysis. Compared to other trajectory optimization techniques, the proposed method allows kinematic and dynamic constraints to be included in the cost function. Thus, the complexity and computational effort of the optimization algorithm is reduced. A two-link simulated robot manipulator is used to demonstrate the effectiveness of the method.

Details

Item Type Book Sections
CreatorsAyten, K. K., Iravani, P. and Sahinkaya, M. N.
DepartmentsFaculty of Engineering & Design > Mechanical Engineering
StatusPublished
ID Code26158
Additional Information8th International Conference on Informatics in Control, Automation and Robotics, ICINCO 2011. 28-31 July 2011. Noordwijkerhout, Netherlands.

Export

Actions (login required)

View Item