A model equation for wavepacket solitary waves arising from capillary-gravity flows


Akers, B. and Milewski, P. A., 2009. A model equation for wavepacket solitary waves arising from capillary-gravity flows. Studies in Applied Mathematics, 122 (3), pp. 249-274.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

Related URLs:


A model equation governing the primitive dynamics of wave packets near an extremum of the linear dispersion relation at finite wavenumber is derived. In two spatial dimensions, we include the effects of weak variation of the wave in the direction transverse to the direction of propagation. The resulting equation is contrasted with the Kadomtsev–Petviashvilli and Nonlinear Schrödinger (NLS) equations. The model is derived as an approximation to the equations for deep water gravity-capillary waves, but has wider applications. Both line solitary waves and solitary waves which decay in both the transverse and propagating directions—lump solitary waves—are computed. The stability of these waves is investigated and their dynamics are studied via numerical time evolution of the equation.


Item Type Articles
CreatorsAkers, B.and Milewski, P. A.
Related URLs
DepartmentsFaculty of Science > Mathematical Sciences
Research CentresCentre for Mathematical Biology
Publisher Statementj.1467-9590.2009.00432.x.pdf: ©MIT. Permission received from the Journal Editor to post this article online.
ID Code26362


Actions (login required)

View Item