Algebras, Coalgebras, Monads and Comonads


Ghani, N., Lüth, C., de Marchi, F. and Power, J., 2001. Algebras, Coalgebras, Monads and Comonads. Electronic Notes in Theoretical Computer Science, 44 (1), pp. 128-145.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below.


Whilst the relationship between initial algebras and monads is well-understood, the relationship between final coalgebras and previous termcomonadsnext term is less well explored. This paper shows that the problem is more subtle and that final coalgebras can just as easily form monads as previous termcomonads and dually, that initial algebras form both monads and previous termcomonads. In developing these theories we strive to provide them with an associated notion of syntax. In the case of initial algebras and monads this corresponds to the standard notion of algebraic theories consisting of signatures and equations: models of such algebraic theories are precisely the algebras of the representing monad. We attempt to emulate this result for the coalgebraic case by defining a notion cosignature and coequation and then proving the models of this syntax are precisely the coalgebras of the representing comonad.


Item Type Articles
CreatorsGhani, N., Lüth, C., de Marchi, F. and Power, J.
DepartmentsFaculty of Science > Computer Science
ID Code26491


Actions (login required)

View Item