Research

Profit-maximizing strategies for an artificial payment card market : Is learning possible?


Reference:

Alexandrova-Kabadjova, B., Tsang, E. and Krause, A., 2011. Profit-maximizing strategies for an artificial payment card market : Is learning possible? Journal of Intelligent Learning Systems and Applications, 3 (2), pp. 70-81.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

http://dx.doi.org/10.4236/jilsa.2011.32009

Abstract

In this paper, we study the dynamics of competition in the payment card market. This is done through a multi-agent based model, which captures explicitly the commercial transactions at the point of sale between consumers and mer-chants. Through simulation, we attempt to model the demand for payment instruments on both sides of the market. Con-strained by this complex demand, a Generalised Population Based Incremental Learning (GPBIL) algorithm is applied to find a profit-maximizing strategy, which in addition has to achieve an average number of card transactions. In the present study we compare the performance of a profit-maximizing strategies obtained by the GPBIL algorithm versus the performance of randomly selected strategies. We found that under the search criteria used, GPBIL was capable of improving the price structure and price level over randomly selected strategies.

Details

Item Type Articles
CreatorsAlexandrova-Kabadjova, B., Tsang, E. and Krause, A.
DOI10.4236/jilsa.2011.32009
DepartmentsSchool of Management
RefereedYes
StatusPublished
ID Code26840

Export

Actions (login required)

View Item