Research

Principal component and hierarchical cluster analyses as applied to transformer partial discharge data with particular reference to transformer condition monitoring


Reference:

Babnik, T., Aggarwal, R. K. and Moore, P. J., 2008. Principal component and hierarchical cluster analyses as applied to transformer partial discharge data with particular reference to transformer condition monitoring. IEEE Transactions on Power Delivery, 23 (4), pp. 2008-2016.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

http://dx.doi.org/10.1109/TPWRD.2008.919030

Abstract

This paper analyses partial discharges obtained by remote radiometric measurements from a power transformer with a known internal defect. Since fingerprints of remote radiometric measurements are not available, the formation of clusters with similar features obtained from captured partial discharge data is crucial. Hierarchical cluster analysis technique is used as a method for grouping different signals. Investigation based on Euclidean and Mahalanobis distance measures and Ward and Average linkage algorithms were performed on partial discharge data pre-processed by principal component analysis. As a result of the analysis, a clear separation of partial discharges emanating from the transformer and discharges emanating from its surrounding is achieved; this in turn should enhance the methodologies for condition monitoring of power transformers.

Details

Item Type Articles
CreatorsBabnik, T., Aggarwal, R. K. and Moore, P. J.
DOI10.1109/TPWRD.2008.919030
DepartmentsFaculty of Engineering & Design > Electronic & Electrical Engineering
RefereedYes
StatusPublished
ID Code27140

Export

Actions (login required)

View Item